Noncommutative crepant resolutions of $c A_{n}$ singularities via Fukaya categories

Jonny Evans
Yankı Lekili

Abstract

We compute the wrapped Fukaya category $\mathcal{W}\left(T^{*} S^{1}, D\right)$ of a cylinder relative to a divisor $D=\left\{p_{0}, \ldots, p_{n}\right\}$ of $n+1$ points, proving a mirror equivalence with the category of perfect complexes on a crepant resolution (over $k\left[t_{0}, \ldots, t_{n}\right]$) of the singularity $u v=t_{0} t_{1} \ldots t_{n}$. Upon making the base-change $t_{i}=f_{i}(x, y)$, we obtain the derived category of any crepant resolution of the $c A_{n}$ singularity given by the equation $u v=f_{0} \ldots f_{n}$. These categories inherit braid group actions via the action on $\mathcal{W}\left(T^{*} S^{1}, D\right)$ of the mapping class group of $T^{*} S^{1}$ fixing D. We also give geometric models for the derived contraction algebras associated to a $c A_{n}$ singularity in terms of the relative Fukaya category of the disc.

1 Introduction

§1.1 Consider the Fukaya category of a point with coefficients in a ring R. Before taking the triangulated envelope, there is only one object: the point itself, with endomorphism algebra R. If R is not a field then there are non-invertible non-zero endomorphisms which allow us to construct new twisted complexes in the derived Fukaya category. Via the Yoneda embedding, we can think of the derived Fukaya category of a point with coefficients in R as $\operatorname{perf}(R)$. We can think of this as the world's lousiest A-model mirror to Spec R. It is lousy in the precise sense that symplectic geometry has given us absolutely no information here: all of the interesting information is contained in the coefficient ring. The moral of the current paper is that there is a whole spectrum of ways we can get at a single triangulated A_{∞}-category by combining symplectic manifolds with coefficient rings. We work out in detail some examples where the symplectic manifold is a 2-dimensional cylinder.
§1.2 The starting point for these examples is the mirror symmetry result proved in [24] between (on the A-side) $T^{*} S^{1}$ with a collection D of $n+1$ punctures and (on the B-side) a certain reducible curve C_{n+1} with $n+1$ nodes. The two sides of the mirror, together with dual Lagrangian torus fibrations are shown in Figure 1 (the noncompact fibres on the A-side are dual to the point-like fibres on the B-side). The precise statement of mirror symmetry
identifies the wrapped Fukaya category of Lagrangian branes avoiding the punctures with the derived category of perfect complexes on the nodal curve.

Figure 1: A punctured cylinder $T^{*} S^{1} \backslash D$ and a nodal curve C_{n+1}. Both are equipped with dual Lagrangian torus fibrations - the fibres are the dashed curves. The fibres above are dual to those below in the sense of having reciprocal radii; the noncompact fibres ("infinite radius") through the punctures are dual to the nodes ("zero radius").
§1.3 Consider the versal deformation $\left\{u v=t_{0} \cdots t_{n}\right\}$ of an A_{n}-curve singularity; this admits a crepant resolution \mathcal{Y} with a morphism to $\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right]$ whose central fibre is C_{n+1}. The B -model in our main example will be \mathcal{Y}. To build an A-model mirror to this, we need to find a Fukaya category which is linear over $R=k\left[t_{0}, \ldots, t_{n}\right]$ and which specialises to the Fukaya category of the $(n+1)$-punctured cylinder when the t-variables are set equal to zero. We therefore use R as the coefficient ring for Floer theory on $T^{*} S^{1}$ and work relative to D, using intersections with D to weight polygons contributing to the Floer A_{∞}-operations.2 We will further base-change coefficient rings to find mirrors to non-versal deformations.
§1.4 Here is the general setting. Let Σ be a surface (possibly non-compact) and let $D=\left\{z_{0}, \ldots, z_{n}\right\} \subset \Sigma$ be a finite set of marked points. Fix a field k, let $n=|D|-1$, and let $R:=k\left[t_{0}, \ldots, t_{n}\right]$. We consider the following wrapped Fukaya category of Σ relative to D :

- The objects are properly-immersed, exact, graded Lagrangian branes in Σ avoiding the marked points D and asymptotic to conical Lagrangians near the ends of Σ. The brane-data comprises a choice of orientation, relative spin-structure, grading, and local system.
- The hom-spaces are given by wrapped intersections (see [1] or [11, Appendix B]).

[^0]- The A_{∞}-operations are given by counting holomorphic polygons with boundaries on (wrapped) Lagrangians, but each polygon P contributes to the corresponding operation with a weight of $\prod_{i=0}^{n} t_{i}^{\operatorname{mult}\left(P, z_{i}\right)} \in R$.
- Finally, we take the split-closed triangulated envelope to get an R-linear triangulated A_{∞}-category which we will write as $\mathcal{W}(\Sigma, D)$.
§1.5 We will frequently change our coefficient ring R. If S is an R-algebra (i.e. a ring with a morphism $R \rightarrow S$) then we will write $\mathcal{W}(\Sigma, D) \otimes_{R} S$ for the corresponding S-linear A_{∞}-category where all hom-spaces are tensored with S.
§1.6 Relative Fukaya categories have played an important role in Floer theory starting with Seidel's paper on mirror symmetry for the quartic surface [33], and the idea of deforming Floer cohomology by weighting operations according to how many times a polygon passes through a point goes back to Ozsváth and Szabo [28] in their work on Heegaard Floer homology. For a detailed exposition of Fukaya categories in the exact setting, see [31]; for wrapped categories in general, see [1] or [11, Appendix B], but for a very explicit model of the wrapped Fukaya category of a surface, see [4] and [15, Section 3.3]. For relative Fukaya categories see [30, 35] and for a very similar example of a relative Fukaya category of a surface, see [23], and for a version with an arithmetic flavour see [27].
§1.7 Main Theorem. We will focus on the specific case where Σ is the cotangent bundle $T^{*} S^{1}$. We will pick a collection of Lagrangian $\operatorname{arcs} L_{0}, \ldots, L_{n}$ as shown in Figure 2. Let S be an R-algebra. We will prove the following results:

Figure 2: The surface $T^{*} S^{1}$ together with its Lagrangian $\operatorname{arcs} L_{0}, \ldots, L_{n}$, marked points z_{0}, \ldots, z_{n} and some of the Reeb chords a_{i} and b_{i}.
A. The endomorphism A_{∞}-algebra of $\bigoplus_{i=0}^{n} L_{i}$ in $\mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} S$ is quasi-isomorphic to the algebra $\mathcal{A}\left(T^{*} S^{1}, D\right) \otimes_{R} S$ where $\mathcal{A}\left(T^{*} S^{1}, D\right)$ is defined in §2.1 below. This algebra is supported in degree zero, and hence has no nontrivial higher products. (See Section 2.)
B. Let $\mathcal{L} \subset \mathcal{W}\left(T^{*} S^{1}, D\right)$ denote the subcategory split-generated by the Lagrangian arcs L_{0}, \ldots, L_{n}. Then $\mathcal{L} \otimes_{R} S$ is preserved by the action of the mapping class group $\Gamma\left(T^{*} S^{1}, D\right)$ of compactly-supported graded symplectomorphisms of $T^{*} S^{1}$ fixing D pointwise. (See Section 3.)
§1.8 Remarks. (i) In Appendix A, we will show that the arcs split-generate the category $\mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} \bar{R}$ where \bar{R} is the completion $k \llbracket t_{0}, \ldots, t_{n} \rrbracket$. We expect that the arcs split-generate $\mathcal{W}\left(T^{*} S^{1}, D\right)$ itself, which would render $\S 1.7$ (B) redundant, but we cannot currently see how to prove this without passing to the completion.
(ii) We will prove something slightly more general than $\S 1.7$ (B) which gives quasi-equivalences for symplectomorphisms which permute the points of D. For some choices of R-algebra S, these will be autoequivalences of \mathcal{L}. See §3.1 for details.
(iii) By construction the algebra $\mathcal{A}\left(T^{*} S^{1}, D\right)$ is linear over R but, in fact, it turns out that it has a bigger center given by $R[u, v] /\left(u v-t_{0} t_{1} \ldots t_{n}\right)$. We expect that the autoequivalences given in $\S 1.7(\mathrm{~B})$ are linear over this bigger ring (not just linear over R). The main reason to expect this is that the additional variables u and v come from Hochschild cohomology classes of $\mathcal{A}\left(T^{*} S^{1}, D\right)$ associated with the infinite ends of $T^{*} S^{1}$, whereas our autoequivalences are induced by compactly supported symplectomorphisms.
§1.9 Mirror symmetry interpretation. Theorem §1.7(A) implies that

$$
\mathcal{L} \simeq \operatorname{perf}\left(\mathcal{A}\left(T^{*} S^{1}, D\right)\right)
$$

This category has an interpretation on the B-side. Consider the singular variety given by

$$
\mathcal{Y}_{0}=\operatorname{Spec} R[u, v] /\left(u v-t_{0} \cdots t_{n}\right) \subset \mathbb{A}^{n+3}
$$

This is a toric singularity. Indeed, consider the vector space $V=\mathbb{A}^{2(n+1)}$ generated by the entries of the 2 -by- $(n+1)$ matrix

$$
\left(\begin{array}{llll}
x_{0} & x_{1} & \ldots & x_{n} \\
y_{0} & y_{1} & \cdots & y_{n}
\end{array}\right)
$$

and consider the action of the torus $T=\mathbb{G}_{m}^{n}$ whose $i^{\text {th }}$ component acts as follows:

$$
\lambda:\left(\begin{array}{cccccc}
x_{0} & \ldots & x_{i-1} & x_{i} & \ldots & x_{n} \\
y_{0} & \ldots & y_{i-1} & y_{i} & \ldots & y_{n}
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
x_{0} & \ldots & \lambda x_{i-1} & \lambda^{-1} x_{i} & \ldots & x_{n} \\
y_{0} & \ldots & \lambda^{-1} y_{i-1} & \lambda y_{i} & \ldots & y_{n}
\end{array}\right)
$$

Then \mathcal{Y}_{0} can be identified with the affine GIT quotient $V / / T$, where we can see that $t_{i}=x_{i} y_{i}, u=x_{0} x_{1} \ldots x_{n}$ and $v=y_{0} y_{1} \ldots, y_{n}$. The generic GIT quotients $V / /{ }_{\theta} T$ provide toric crepant resolutions of \mathcal{Y}_{0}. These correspond to triangulations of $[0,1] \times \Delta_{n}$ where Δ_{n} denotes the n-simplex. All of these are (non-canonically) isomorphic to a toric Calabi-Yau variety, which we denote by \mathcal{Y}. These toric Calabi-Yau varieties are well-known ([9], [25]). We have a map $\mathcal{Y} \rightarrow \operatorname{Spec} R$ given by projection to $\left(t_{0}, \ldots t_{n}\right)$. The fiber of this map over 0 is a nodal curve given by a chain of \mathbb{P}^{1} 's together with two \mathbb{A}^{1} 's attached at the two ends, and the total space \mathcal{Y} is the versal deformation of this nodal curve.

There is a tilting bundle \mathcal{V} on \mathcal{Y} constructed by Van den Bergh [38]; we review this construction in Section 4 . In $\S 4.6$, we will see that $\operatorname{End}_{\mathcal{Y}}(\mathcal{V})$ is precisely our algebra $\mathcal{A}\left(T^{*} S^{1}, D\right)$ and since \mathcal{Y} is smooth, this means that

$$
\mathcal{L} \simeq D^{b}(\operatorname{coh}(\mathcal{Y}))
$$

which can be regarded as a relative version of homological mirror symmetry for \mathcal{Y} (see also Remark §1.13).
The braid group action on $D^{b}(\operatorname{coh}(\mathcal{Y}))$ is constructed by Donovan-Segal 9] by the variation of GIT method, and previously by Bezrukavnikov-Riche [7] via Springer theory. Under the mirror symmetry equivalence discussed above their action on the B-side almost certainly corresponds to our braid group action on the A-side given by Theorem §1.7(B) but we do not check the details here.
§1.10 Base change. We get further results by working over an R-algebra S. Let $\mathcal{Y}_{S, 0}=\operatorname{Spec}\left(\mathcal{O}_{Y_{0}} \otimes_{R} S\right)$. Let \mathcal{Y}_{S} be the fibre product:

In §4.7, we will show that the pullback $j^{*} \mathcal{V}$ is still a tilting object with

$$
\operatorname{End}\left(j^{*} \mathcal{V}\right) \cong \mathcal{A}\left(T^{*} S^{1}, D\right) \otimes_{R} S
$$

The variety \mathcal{Y}_{S} is a partial resolution of $\mathcal{Y}_{S, 0}$, and Theorem §1.7(B) now yields an action of $\Gamma\left(T^{*} S^{1}, D\right)$ by autoequivalences on $\operatorname{perf}\left(\mathcal{Y}_{S}\right)$. If \mathcal{Y}_{S} is itself smooth, this category is quasi-equivalent to $D^{b}\left(\operatorname{coh}\left(\mathcal{Y}_{S}\right)\right)$.
§1.11 Example. If we take $S=k[t]$ considered as an R-module via the homomorphism $t_{i} \mapsto t$ then $\mathcal{Y}_{S, 0}=\operatorname{Spec}\left(k[u, v, t] /\left(u v-t^{n+1}\right)\right)$ is the A_{n} surface singularity and \mathcal{Y}_{S} is its minimal resolution, so we get a $\Gamma\left(T^{*} S^{1}, D\right)$ action on $D^{b}\left(\operatorname{coh}\left(\mathcal{Y}_{S}\right)\right)$. This is one of the examples where we get a bigger group action: any compactly-supported graded symplectomorphism of $T^{*} S^{1}$ fixing D setwise acts as an autoequivalence of \mathcal{L}. This yields an
action of the annular (extended) braid group by autoequivalences. In this example, an action of the (usual) braid group was known to Seidel and Thomas [34] and an extended braid group action was constructed by Gadbled, Thiel and Wagner in [13].
§1.12 Example. Let $f(x, y)$ be a polynomial whose lowest order term has degree $n+1$ and consider the compound A_{n} singularity $\{u v=f(x, y)\} \subset \mathbb{C}^{4}$. If f factors as $f_{0} \cdots f_{n}$ with each curve $\left\{f_{i}(x, y)=0\right\}$ smooth then the singularity admits a small resolution. This resolution has the form \mathcal{Y}_{S} where $S=k[x, y]$ is considered as an R-algebra via the homomorphism $t_{i} \mapsto f_{i}(x, y)$. The algebra $\mathcal{A}\left(T^{*} S^{1}, D\right) \otimes_{R} S$ is called a noncommutative crepant resolution (NCCR) of this singularity: it is a noncommutative algebra whose derived category is equivalent to the derived category of the resolution.
Theorem $\S 1.7(\mathrm{~B})$ yields an action of $\Gamma\left(T^{*} S^{1}, D\right)$ on $D^{b}\left(\operatorname{coh}\left(\mathcal{Y}_{S}\right)\right)$. This can be enhanced to the bigger group of symplectomorphisms: let ψ be a symplectomorphism of $T^{*} S^{1}$ fixing D setwise and let σ be the permutation $\psi\left(z_{i}\right)=z_{\sigma(i)}$; we get an autoequivalence from ψ if $f_{\sigma(i)}=f_{i}$ for all i. Autoequivalences of $D^{b}\left(\operatorname{coh}\left(\mathcal{Y}_{S}\right)\right)$ called "mutation functors" were constructed by Iyama and Wemyss [20] using flops along the exceptional curves.
§1.13 These examples show that, although this Fukaya category leaves much of the heavylifting to the module category of the coefficient ring, it does readily give geometric insights which are nontrivial on the B-side. The relative Fukaya category $\mathcal{W}\left(T^{*} S^{1}, D\right)$ is appealing because working with Fukaya categories of surfaces reduces to combinatorial algebra. However, in view of [26, Conjecture E], it is possible to relate the relative Fukaya category $\mathcal{W}\left(T^{*} S^{1}, D\right)$ to an appropriate subcategory of an absolute Fukaya category of a higher dimensional symplectic manifold X. See [26, Example 2.5] for a detailed exposition of the case $D=\{1\}$.
§1.14 Derived contraction algebra. The derived contraction algebra is a DG-algebra associated to a small resolution $\mathcal{Y} \rightarrow \mathcal{Y}_{0}$ that prorepresents derived deformations of the irreducible components of the reduced exceptional fiber of the contraction. Concretely, it is a non-positively graded DG-algebra whose zeroth cohomology recovers the contraction algebra of Donovan and Wemyss [10]. See the papers by Hua-Toda [18], Hua [16], HuaKeller [17], and Booth [5] for more background. The derived contraction algebra is obtained by localising a noncommutative resolution away from an idempotent. From the Fukayacategorical description of the noncommutative resolution in the $c A_{n}$ case from $\$ 1.12$, we can give a geometric interpretation of this localisation: the derived contraction algebra can be described using the relative Fukaya category of the punctured disc $\left(T^{*} S^{1} \backslash L_{0}, D\right)$. We discuss this in Section 6
§1.15 Acknowledgements. JE is supported by EPSRC grant EP/W015749/1. YL is partially supported by the Royal Society URF $\backslash R \backslash 180024$ and EPSRC grant EP/W015889/1. We would like to thank Michael Wemyss for enlightening discussions which led to a much
cleaner approach, and Matt Booth, Gustavo Jasso, Daniil Mamaev and Richard Thomas for helpful conversations.

2 The Floer cohomology algebra

§2.1 Definition of $\mathcal{A}\left(T^{*} S^{1}, D\right)$. Let Q_{n+1} be the quiver in Figure 3 with vertices L_{0}, \ldots, L_{n} and arrows ${ }^{3} a_{i}: L_{i-1} \rightarrow L_{i}, b_{i}: L_{i} \rightarrow L_{i-1}$.

Figure 3: The quiver Q_{n+1}.
Recall that $R=k\left[t_{0}, \ldots, t_{n}\right]$. Consider the path algebra $R Q_{n+1}$ of Q_{n+1} with coefficients in the ring R; that is elements of $R Q_{n+1}$ are R-linear combinations of paths in Q_{n+1} and multiplication is given by concatenate-or-die. We write e_{i} for the idempotent corresponding to the constant (lazy) path at the vertex L_{i}. Let $I_{R} \subset R Q_{n}$ be the ideal of $R Q_{n}$ generated by

$$
a_{i} b_{i}-t_{i} e_{i+1}, \quad b_{i} a_{i}-t_{i} e_{i}, \quad i=0, \ldots, n .
$$

Write $\mathcal{A}\left(T^{*} S^{1}, D\right)$ for the algebra $R Q_{n} / I_{R}$, considered as an A_{∞}-algebra concentrated in degree zero with no differential or higher operations.

Theorem $\S 1.7$ (A) follows immediately from the next proposition.
§2.2 Proposition. The A_{∞}-algebra $\bigoplus_{i, j=0}^{n} C F\left(L_{i}, L_{j}\right)$ is quasi-equivalent to $\mathcal{A}\left(T^{*} S^{1}, D\right)$. Note that, in this proof, we write $C F$ to mean $\operatorname{hom}_{\mathcal{W}\left(T^{*} S^{1}, D\right)}$.

Proof. We will use the model of the Fukaya category from [15]. The arrows labelled a and b in Figure 3 represent the Reeb chords with the same names in Figure 2, considered as wrapped intersection points $a_{i} \in C F^{0}\left(L_{i}, L_{i+1}\right), b_{i} \in C F^{0}\left(L_{i+1}, L_{i}\right)$. All Reeb chords (called "boundary paths" in [15]) can be obtained by concatenating these, and therefore

[^1]the R-module $C F\left(L_{i}, L_{j}\right)$ has as a basis the set of all paths from L_{i} to L_{j} in Q_{n+1}. Here, we include the constant path e_{i} at L_{i}, thought of as the identity element of $C F\left(L_{i}, L_{i}\right)$.

Since all of these chords are concatenations of chords of degree zero, everything is in degree zero, which implies that the only nontrivial μ_{k}-operation on $\bigoplus_{i, j} C F\left(L_{i}, L_{j}\right)$ is μ_{2} : the differential and higher products all vanish. To compute μ_{2}, aside from concatenation of chords, we need to count polygons. The arcs L_{i} cut Σ into $m+1$ quadrilaterals D_{0}, \ldots, D_{n}, where we write D_{i} for the quadrilateral containing the point z_{i}. Using the formulx ${ }^{4}$ [15, Eq. 3.18] and keeping track of our additional weighting from the marked points, we see that:

$$
\mu_{2}\left(a_{i}, b_{i}\right)=t_{i} e_{i+1} \quad \mu_{2}\left(b_{i}, a_{i}\right)=t_{i} e_{i}
$$

for all i, where these contributions come from D_{i}. Any other contributions to μ_{2} would need to come from quadrilaterals, and any quadrilateral can be decomposed as a union of D_{i} s, so any other μ_{2} product can be deduced from these.

3 Autoequivalences

$\S 3.1$ Group action. Let $R=k\left[t_{0}, \ldots, t_{n}\right]$. Given a permutation σ of $\{0,1, \ldots, n\}$, let R_{σ} denote the R-module whose underlying vector space is R but t_{i} acts as multiplication by $t_{\sigma(i)}$. Consider the triangulated A_{∞}-category

$$
\mathcal{W}\left(T^{*} S^{1}, D\right) \rtimes S_{n+1}:=\coprod_{\sigma \in S_{n+1}} \mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} R_{\sigma}
$$

where the morphism spaces between different components are zero. Given a graded symplectomorphism $\psi: T^{*} S^{1} \rightarrow T^{*} S^{1}$ satisfying $\psi(D)=D$, we get a permutation $\sigma \in S_{n+1}$ defined by $\psi\left(z_{i}\right)=z_{\sigma(i)}$. This induces an autoequivalence

$$
\mathcal{W}\left(T^{*} S^{1}, D\right) \rtimes S_{n+1} \rightarrow \mathcal{W}\left(T^{*} S^{1}, D\right) \rtimes S_{n+1}
$$

sending $\mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} R_{\tau}$ to $\mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} R_{\sigma \tau}$. In particular, this gives an action of the pure annular braid group by autoequivalences on $\mathcal{W}\left(T^{*} S^{1}, D\right)$.
$\S 3.2$ Theorem. Let \mathcal{L}_{σ} denote the subcategory of $\mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} R_{\sigma}$ generated by the arcs L_{0}, \ldots, L_{n}. Then the autoequivalences from $\S 3.1$ preserve $\coprod_{\sigma \in S_{n+1}} \mathcal{L}_{\sigma}$.
We now begin the proof of this theorem, which will conclude in §3.10. We will focus on the case $n \geq 2$ because it can be handled uniformly: for small n the arguments are similar but the pictures are slightly different because $L_{1}=L_{n}$ or $L_{0}=L_{1}=L_{n}$. Throughout the argument we will ignore signs and orientations of moduli spaces. The reason we can get away with this is explained in Remark $\S 3.11$.

[^2]§3.3 Let $\psi_{i}: T^{*} S^{1} \rightarrow T^{*} S^{1}$ denote the half-twist around the arc connecting z_{i} to z_{i+1} (indices taken modulo $n+1$). Let $\rho: T^{*} S^{1} \rightarrow T^{*} S^{1}$ denote the symplectomorphism which preserves concentric circles in $T^{*} S^{1}$, fixing the two boundary components pointwise and rotating the points of D by $2 \pi /(n+1)$. Let δ be a boundary-parallel Dehn twist parallel to the inner boundary of $T^{*} S^{1}$. The mapping classes $\psi_{0}, \ldots, \psi_{n}, \rho, \delta$ generate the graded symplectic mapping class group: se ϵ^{5} [13, Section 1]. The symplectomorphism δ acts trivially on our Lagrangians: they are objects of the wrapped category and δ is part of the wrapping that we would do anyway to compute hom-spaces. The symplectomorphism ρ cyclically permutes the L_{i}. So to prove that $\Gamma\left(T^{*} S^{1}, D\right)$ preserves \mathcal{L}, it suffices to check that $\psi_{i}\left(L_{j}\right)$ is generated by the $\operatorname{arcs} L_{0}, \ldots, L_{n}$ for all i, j. In fact, $\psi_{i}\left(L_{j}\right)=L_{j}$ unless $i=j$, so we just need to study $\psi_{i}\left(L_{i}\right)$. Moreover, by cyclic symmetry of $\left(T^{*} S^{1}, D\right)$ we can assume that $i=0$.

Figure 4: The half-twisted arc $\psi_{0}\left(L_{0}\right)$, perturbed slightly along the Reeb flow to separate it from L_{0}. We have added two stops on the boundary for convenience; these are labelled o. We have also labelled the Reeb orbits connecting the Lagrangian arcs. Note that $a_{0}=\alpha^{\prime} \alpha$ and $b_{n}=\beta^{\prime} \beta^{\prime}$. The point p (marked with a \bullet) is an intersection point of L_{0} with $\psi_{0}\left(L_{0}\right)$. Two important polygonal regions A and B are shaded.
$\S 3.4$ The half-twisted arc $\psi_{0}\left(L_{0}\right)$ is shown in Figure 4. To localise the calculation near the diagram, we will insert a stop (in the sense of Sylvan [37]) on each of the two boundary components and work first in the partially wrapped Fukaya category. We will write down a twisted complex \mathbb{L}^{\prime} built out of L_{n}, L_{0} and L_{1} and a quasi-isomorphism $q \in C F\left(\mathbb{L}^{\prime}, \psi_{0}\left(L_{0}\right)\right)$. If we then apply Sylvan's stop removal functor to this twisted complex, we obtain a twisted complex \mathbb{L} in $\mathcal{W}\left(T^{*} S^{1}, D\right)$ which is quasi-isomorphic to $\psi_{0}\left(L_{0}\right)$.

[^3]§3.5 The advantage of inserting stops is that the partially wrapped Floer cohomology is easy to read off from Figure 4 :
\[

$$
\begin{array}{ll}
C F\left(\psi_{0}\left(L_{0}\right), L_{0}\right)=R \cdot p, & C F\left(L_{0}, \psi_{0}\left(L_{0}\right)\right)=R \cdot p \oplus R \cdot \alpha \oplus R \cdot \beta, \\
C F\left(\psi_{0}\left(L_{0}\right), L_{1}\right)=R \cdot \alpha^{\prime}, & C F\left(L_{1}, \psi_{0}\left(L_{0}\right)\right)=R \cdot\left(\beta b_{0}\right), \\
C F\left(\psi_{0}\left(L_{0}\right), L_{n}\right)=R \cdot \beta^{\prime}, & C F\left(L_{n}, \psi_{0}\left(L_{0}\right)\right)=R \cdot\left(\alpha a_{n}\right) .
\end{array}
$$
\]

All of these morphisms are in degree zero except for p which is in degree 1.
§3.6 Consider the twisted complex

$$
\mathbb{L}^{\prime}:=\left(L_{1} \oplus L_{n} \xrightarrow{\left(b_{0}, a_{n}\right)} L_{0}\right)
$$

and the morphisms $q_{1}: \mathbb{L}^{\prime} \rightarrow \psi_{0}\left(L_{0}\right)$ and $q_{2}: \psi_{0}\left(L_{0}\right) \rightarrow \mathbb{L}^{\prime}$ defined by ${ }^{6}$

We need to show that $\mu_{2}^{T w}\left(q_{1}, q_{2}\right)$ and $\mu_{2}^{T w}\left(q_{2}, q_{1}\right)$ are equal to the identity elements of $C F\left(\psi_{0}\left(L_{0}\right), \psi_{0}\left(L_{0}\right)\right)$ and $C F\left(\mathbb{L}^{\prime}, \mathbb{L}^{\prime}\right)$ respectively (we are using Seidel's convention for composition, right-to-left). We compute $\mu_{2}^{T w}$ by stacking the morphisms and then taking all possible paths through the resulting diagram, composing wherever possible.
§3.7 To calculate $\mu_{2}^{T w}\left(q_{2}, q_{1}\right)$, we have the following diagram:

There are several routes through the diagram connecting the top row to the bottom. There are two paths that involve three morphisms:

[^4]\[

$$
\begin{aligned}
L_{1} \oplus L_{n} \xrightarrow{\left(b_{0}, a_{n}\right)} & L_{0} \\
\left(\begin{array}{ll}
\mu_{3}\left(\alpha^{\prime}, p, b_{0}\right) & \mu_{3}\left(\alpha^{\prime}, p, a_{n}\right) \\
\mu_{3}\left(\beta^{\prime}, p, b_{0}\right) & \mu_{3}\left(\beta^{\prime}, p, a_{n}\right)
\end{array}\right) \downarrow & \|_{3}\left(b_{0}, \alpha^{\prime}, p\right)+\mu_{3}\left(a_{n}, \beta^{\prime}, p\right) \\
L_{1} \oplus L_{n} \xrightarrow[\left(b_{0}, a_{n}\right)]{ } & L_{0}
\end{aligned}
$$
\]

There is also a path of length 2 connecting L_{0} to $L_{1} \oplus L_{n}$ and one of length 4 connecting $L_{1} \oplus L_{n}$ to L_{0}. Both of these concatenations vanish for degree reasons.
§3.8 The μ_{3} products contributing to $\mu_{2}^{T w}\left(q_{2}, q_{1}\right)$ are:

$$
\begin{aligned}
& L_{1} \oplus L_{n} \xrightarrow{\left(b_{0}, a_{n}\right)} L_{0} \\
&\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \downarrow \\
& L_{1} \oplus L_{n} \xrightarrow[\left(b_{0}, a_{n}\right)]{ }
\end{aligned}
$$

For example, the products $\mu_{3}\left(\alpha^{\prime}, p, b_{0}\right)=1$ and $\mu_{3}\left(\beta^{\prime}, p, b_{0}\right)=1$ come from the shaded polygons in Figure 4. To understand $\mu_{3}\left(\alpha^{\prime}, p, b_{0}\right)=1$, we make partially wrapped perturbations (Figure 5). We are trying to compute

$$
\mu_{3}: C F\left(\psi_{0}\left(L_{0}\right)^{\prime}, L_{1}\right) \otimes C F\left(L_{0}^{\prime \prime}, \psi_{0}\left(L_{0}\right)^{\prime}\right) \otimes C F\left(L_{1}^{\prime \prime \prime}, L_{0}^{\prime \prime}\right) \rightarrow C F\left(L_{1}^{\prime \prime \prime}, L_{1}\right)
$$

Here, each prime indicates that we have partially wrapped, and that we have wrapped more when there are more primes. We see that the polygonal region A from Figure 4 becomes a quadrilateral with vertices at $\alpha^{\prime}, p, b_{0}$, and at the unique intersection point $L_{1}^{\prime \prime \prime} \cap L_{1}$ which represents $1 \in C F\left(L_{1}^{\prime \prime \prime}, L_{1}\right)$. The calculation of $\mu_{3}\left(\beta^{\prime}, p, a_{n}\right)$ is similar.
§3.9 The calculation of $\mu_{3}\left(b_{0}, \alpha^{\prime}, p\right)+\mu_{3}\left(a_{n}, \beta^{\prime}, p\right)$ comes down to the same two polygons, but it is more subtle. Either polygon A contributes to $\mu_{3}\left(a_{n}, \beta^{\prime}, p\right)=1$ and the other term is zero, or else polygon B contributes to $\mu_{3}\left(b_{0}, \alpha^{\prime}, p\right)=1$. Which of these eventualities occurs depends on the choice of partial wrappings; see Figure 6.
§3.10 To calculate $\mu_{2}^{T w}\left(q_{1}, q_{2}\right)$, we have the following diagram:

Figure 5: The computation $\mu_{3}\left(\alpha^{\prime}, p, b_{0}\right)=1$ via partial wrapping.

There is only one route from the top row to the bottom, which means that

$$
\begin{aligned}
\mu_{2}^{T w}\left(q_{1}, q_{2}\right) & =\mu_{3}\left(p,\left(b_{0}, a_{n}\right),\left(\alpha^{\prime}, \beta^{\prime}\right)\right) \\
& =\mu_{3}\left(p, b_{0}, \alpha^{\prime}\right)+\mu_{3}\left(p, a_{n}, \beta^{\prime}\right)
\end{aligned}
$$

As with the calculation in $\S 3.9$, this yields $1 \in C F\left(\psi_{0}\left(L_{0}\right), \psi_{0}\left(L_{0}\right)\right)$. This shows that q_{1} and q_{2} are mutually inverse quasi-isomorphisms, which completes the proof.
§3.11 Remark about signs. In this proof, we completely ignored signs. If we insert all the undetermined signs, the arguments yield

$$
\mu_{2}^{T w}\left(q_{1}, q_{2}\right)= \pm \operatorname{id}_{\psi_{0}\left(L_{0}\right)}, \quad \mu_{q_{1}}^{T w}\left(q_{2}, q_{2}\right)=\left(\pm \operatorname{id}_{L_{1}}\right) \oplus\left(\pm \operatorname{id}_{L_{n}}\right) \oplus\left(\pm \operatorname{id}_{L_{0}}\right)
$$

At this point, we pass to cohomology and consider the morphisms $\left[q_{1}\right] \in H F\left(\mathbb{L}, \psi_{0}\left(L_{0}\right)\right)$ and $\left[q_{2}\right] \in H F\left(\psi_{0}\left(L_{0}\right), L_{0}\right)$. The morphisms

$$
\left[q_{1}\right] \in H F\left(\mathbb{L}, \psi_{0}\left(L_{0}\right)\right), \quad\left[q_{2}\right] \circ\left[q_{1}\right] \circ\left[q_{2}\right] \in H F\left(\psi_{0}\left(L_{0}\right), \mathbb{L}\right)
$$

are now mutually inverse because all signs are squared in the composites $\left[q_{1}\right] \circ\left[q_{2}\right] \circ\left[q_{1}\right] \circ\left[q_{2}\right]$ and $\left[q_{2}\right] \circ\left[q_{1}\right] \circ\left[q_{2}\right] \circ\left[q_{1}\right]$.

Figure 6: The computation $\mu_{3}\left(\left(b_{0}, a_{n}\right),\left(\alpha^{\prime}, \beta^{\prime}\right), p\right)=1$ via partial wrapping. Depending on the choice of wrapping, either the polygon A or the polygon B yields a contribution. Left: With this choice of wrapping, we have $\mu_{3}\left(b_{0}, \alpha^{\prime}, p\right)=1$ and $\mu_{3}\left(a_{n}, \beta^{\prime}, p\right)=0$.
Right: With this choice of wrapping, we have $\mu_{3}\left(b_{0}, \alpha^{\prime}, p\right)=0$ and $\mu_{3}\left(a_{n}, \beta^{\prime}, p\right)=1$.

4 B-side

§4.1 Setup. As in the introduction, let $R=k\left[t_{0}, \ldots, t_{n}\right]$, let $\mathcal{Y}_{0}=\operatorname{Spec} R[u, v] /(u v-$ $\left.t_{0} \cdots t_{n}\right)$), and let $f: \mathcal{Y}_{0} \rightarrow \mathbb{A}^{n+1}$ be the morphism given by $\left(t_{0}, \ldots, t_{n}\right)$. This morphism f is the versal deformation of the A_{n} curve singularity. We have a toric crepant resolution $\pi: \mathcal{Y} \rightarrow \mathcal{Y}_{0}$ given by a triangulation of $[0,1] \times \Delta_{n}$.
§4.2 The Van den Bergh tilting bundle. We now describe a tilting bundle on \mathcal{Y}, making explicit the construction of Van den Bergh [38, Propositions 3.2.5, 3.2.10] in this example. Recall from $\S 1.9$ that \mathcal{Y} is the GIT quotient $V \|_{\theta} T$, where V is the space of 2-by- $(n+1)$ matrices

$$
\left(\begin{array}{llllll}
x_{0} & \ldots & x_{i} & x_{i+1} & \ldots & x_{n} \\
y_{0} & \ldots & y_{i} & y_{i+1} & \ldots & y_{n}
\end{array}\right)
$$

and the torus $T=\mathbb{G}_{m}^{n}$ acts as

$$
\left(\begin{array}{cccccc}
\lambda_{1} x_{0} & \ldots & \lambda_{i}^{-1} \lambda_{i+1} x_{i} & \lambda_{i+1}^{-1} \lambda_{i+2} x_{i+1} & \ldots & \lambda_{n}^{-1} x_{n} \\
\lambda_{1}^{-1} y_{0} & \ldots & \lambda_{i} \lambda_{i+1}^{-1} y_{i} & \lambda_{i+1} \lambda_{i+2}^{-1} y_{i+1} & \ldots & \lambda_{n} y_{n}
\end{array}\right)
$$

and θ is the character $\theta\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\lambda_{1} \cdots \lambda_{n}$ of T.
Given another character $\chi: T \rightarrow \mathbb{C}^{*}$, we get a line bundle $(V \times \mathbb{C}) / /{ }_{\theta} T$ over \mathcal{Y}, where T acts with weight χ on \mathbb{C}. Let \mathcal{M}_{i} be the line bundle corresponding to the character $\chi_{i}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\lambda_{i}$. The sections of \mathcal{M}_{i} are in bijection with the polynomials in the variables x_{i}, y_{i} which have weight χ under the action of T. For example, x_{0} is a section of \mathcal{M}_{1} and y_{n} is a section of \mathcal{M}_{n}.
§4.3 Lemma. The sections of $\mathcal{O}_{\mathcal{Y}}$ form a ring isomorphic to $R[u, v] /\left(u v-t_{0} \cdots t_{n}\right)$. The sections of \mathcal{M}_{i} form a module over this ring which is generated by $\sigma_{i}:=x_{0} \cdots x_{i-1}$ and $\tau_{i}:=y_{i} \cdots y_{n}$.

Note that since $\pi_{*} \mathcal{O}_{\mathcal{Y}}=\mathcal{O}_{\mathcal{Y}_{0}}$ we can think of $H^{0}\left(\mathcal{M}_{i}\right)$ as an $\mathcal{O}_{\mathcal{Y}}$-module or an $\mathcal{O}_{\mathcal{Y}_{0}}$-module. It is isomorphic to the $R[u, v] /\left(u v-t_{0} \cdots t_{n}\right)$-module $\left(u, t_{0} \cdots t_{i-1}\right)$ by identifying σ_{i} with u and τ_{i} with $t_{0} \cdots t_{i-1}$.

Proof. Consider the monomial $x_{0}^{c_{0}} \cdots x_{n}^{c_{n}} y_{0}^{d_{0}} \cdots y_{n}^{d_{n}}$. The condition that this defines a section of $\mathcal{O}_{\mathcal{Y}}$ is that $c_{i}+d_{i+1}-c_{i+1}-d_{i}=0$ for all $i=0, \ldots, n-1$. This implies that $c_{0}-d_{0}=\cdots=c_{n}-d_{n}$. If this common value is positive then the monomial can be written as

$$
t_{0}^{d_{0}} \cdots t_{n}^{d_{n}} u^{c_{0}-d_{0}}
$$

otherwise it can be written as

$$
t_{0}^{c_{0}} \cdots t_{n}^{c_{n}} v^{d_{0}-c_{0}}
$$

where we are defining

$$
u=x_{0} \cdots x_{n}, \quad v=y_{0} \cdots y_{n}, \quad t_{i}=x_{i} y_{i}
$$

as in §1.9. The argument for the sections of \mathcal{M}_{i} is similar except one is left with an additional factor of $x_{0} \cdots x_{i-1}$ or $y_{i+1} \cdots y_{n}$ depending on whether $c_{i}>d_{i}$ or $d_{i+1}>c_{i}$.
§4.4 Lemma. Let $\mathcal{M}=\bigoplus_{i=1}^{n} \mathcal{M}_{i}$. Consider the $n-1$ sections

$$
\begin{aligned}
s_{1}= & \left(\sigma_{1}, \tau_{2}, 0, \ldots, 0\right) \\
s_{2}= & \left(0, \sigma_{2}, \tau_{3}, 0, \ldots, 0\right) \\
& \vdots \\
s_{n-1} & =\left(0, \cdots, 0, \sigma_{n-1}, \tau_{n}\right)
\end{aligned}
$$

These sections are everywhere linearly independent, and hence span a copy of the trivial bundle of rank $n-1$ inside \mathcal{M}.

Proof. At each point of \mathcal{Y}, the wedge product $s_{1} \wedge s_{2} \wedge \cdots \wedge s_{n-1}$ has components

$$
\begin{gathered}
\tau_{2} \cdots \tau_{n} \\
\sigma_{1} \tau_{3} \cdots \tau_{n} \\
\sigma_{1} \sigma_{2} \tau_{4} \cdots \tau_{n} \\
\vdots \\
\sigma_{1} \cdots \sigma_{n-1}
\end{gathered}
$$

If the sections are linearly dependent somewhere then all of these components vanish at that point. Let j be minimal such that $\sigma_{j}=0$; note that this implies $x_{j}=0$. Since
$\sigma_{1} \cdots \sigma_{j-1} \tau_{j+1} \cdots \tau_{n}=0$ we deduce that some $\tau_{k}=0$ for $k>j$, and for the maximal such k we have that $y_{k}=0$. But the unstable locus for GIT is the union of the subvarieties $\left\{x_{j}=y_{k}=0\right\}$ for $0 \leq j<k \leq n$, so on the GIT quotient \mathcal{Y} there are no points where these sections vanish simultaneously.
§4.5 Corollary. Let \mathcal{L} be the quotient of \mathcal{M} by the trivial subbundle spanned by these sections. Then \mathcal{L} is an ample line bundle on \mathcal{Y} and $\mathcal{V}:=\mathcal{O}_{\mathcal{Y}} \oplus \mathcal{M}$ is a tilting bundle.

Proof. The quotient is a line bundle and is therefore determined by its first Chern class, which is in turn determined by its restriction to the curve $\left\{t_{0}=\cdots=t_{n}=0\right\} \subset \mathcal{Y}$. This curve is a chain comprising n copies of \mathbb{P}^{1} which generate $H_{2}(\mathcal{Y} ; \mathbb{Z})$ as well as two copies of \mathbb{A}^{1} at either end of the chain. The bundle \mathcal{M}_{i} restricts to the bundle $\mathcal{O}(1)$ on the i th \mathbb{P}^{1} and to the trivial bundle on the other $\mathbb{P}^{1} \mathrm{~s}$, which means that \mathcal{L} restricts to $\mathcal{O}(1)$ on all the \mathbb{P}^{1} s. Since the compact irreducible components of fibres of $\pi: \mathcal{Y} \rightarrow \mathcal{Y}_{0}$ are chains of $\mathbb{P}^{1} \mathrm{~s}$ homologous to the positive linear combinations of $\mathbb{P}^{1} \mathrm{~S}$ in this chain, this implies that \mathcal{L} is relatively ample.

Since the bundles \mathcal{M}_{i} are toric line bundles generated by global sections, we have [12, Corollary on p.74]

$$
\operatorname{Ext}^{j}\left(\mathcal{O}_{\mathcal{Y}}, \mathcal{M}_{i}\right)=0 \text { for all } j>0
$$

If we can show that $\operatorname{Ext}^{1}\left(\mathcal{M}_{i}, \mathcal{O}_{\mathcal{Y}}\right)=0$ then we can use [38, Lemma 3.2.3] to deduce that $\operatorname{Ext}^{*}\left(\mathcal{O}_{\mathcal{Y}} \oplus \mathcal{M}, \mathcal{O}_{\mathcal{Y}} \oplus \mathcal{M}\right)$ is supported in degree zero and argue as in [38, Proposition 3.2.5] to deduce that $\mathcal{O}_{\mathcal{Y}} \oplus \mathcal{M}$ generates.

Tensoring with \mathcal{M}_{i}^{-1} we see that $\operatorname{Ext}^{1}\left(\mathcal{O}_{\mathcal{Y}}, \mathcal{M}_{i}\right) \cong H^{1}\left(\mathcal{M}_{i}^{-1}\right)$. By projecting to $\left(t_{0}, \ldots, t_{n}\right)$, we can view \mathcal{Y} as a family over \mathbb{A}^{n+1} which is the versal family of deformations of the nodal curve of the form $\mathbb{A}^{1} \cup_{p t} \mathbb{P}^{1} \cup_{p t} \mathbb{P}^{1} \cup_{p t} \ldots \mathbb{P}^{1} \cup_{p t} \mathbb{A}^{1}$ with $n+1$ nodes. Any other fiber C_{t} of this family is given by a nodal curve obtained from C_{0} by smoothing the nodes corresponding the non-zero component of $t=\left(t_{0}, \ldots, t_{n}\right)$. The restriction of \mathcal{M}_{i}^{-1} to these curves gives a line bundle on C_{t} whose restriction to the rational components of C_{t} are either all trivial or in at most one component it restricts to $\mathcal{O}(-1)$. In any case, $H^{1}\left(\left.\mathcal{M}_{i}^{-1}\right|_{C_{t}}\right)=0$ for any t, which then implies $H^{1}\left(\mathcal{M}_{i}^{-1}\right)=0$ as claimed.
§4.6 Corollary. The derived category of \mathcal{Y} is quasi-equivalent to the derived category of modules over $\mathcal{A}\left(T^{*} S^{1}, D\right)$.

Proof. Since $\mathcal{O}_{\mathcal{Y}} \oplus \mathcal{M}$ is a tilting object, the derived category of \mathcal{Y} is quasi-equivalent to the derived category of modules of $\operatorname{End}_{\mathcal{Y}}\left(\mathcal{O}_{\mathcal{Y}} \oplus \mathcal{M}\right)$. This can be computed directly via toric geometry. Indeed, we have $\operatorname{End}_{\mathcal{Y}}\left(\mathcal{M}_{i}, \mathcal{M}_{j}\right) \cong H^{0}\left(\mathcal{M}_{j} \otimes \mathcal{M}_{i}^{-1}\right)$ which, as in §4.3, can be identified with the set of polynomials $p \in k\left[x_{i}, y_{j}\right]$ in the Cox ring such that $p(\lambda \cdot x)=\chi_{-i, j}(\lambda) p(x)$ for all $\lambda \in T$, where $\chi_{-i, j}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\lambda_{i}^{-1} \lambda_{j}$. Assuming $i \geq j$ without loss of generality, such polynomials are generated freely over R by

$$
x_{i} x_{i+1} \ldots x_{n} x_{0} \ldots x_{j-1} u^{r}, \quad y_{j} y_{j+1} \ldots y_{i-1} v^{s} \text { for } r, s \in \mathbb{Z}_{\geq 0}
$$

Note that $\operatorname{End}_{\mathcal{Y}}\left(\mathcal{M}_{i}, \mathcal{M}_{i}\right) \cong \mathcal{O}_{\mathcal{Y}}$ itself is freely generated over R by $\left\{1, u^{r}, v^{s}: r, s \in \mathbb{Z}_{\geq 0}\right\}$.
The identification with the algebra $\mathcal{A}\left(T^{*} S^{1}, D\right)$ follows immediately by sending the above basis over $R=k\left[t_{0}, t_{1}, \ldots, t_{n}\right]$ to

$$
\left(a_{i} \ldots a_{n} a_{0} \ldots a_{j-1}\right) \cdot\left(\sum_{i=0}^{n} a_{i} \ldots a_{n} a_{0} \ldots a_{i-1}\right)^{r}, \quad b_{j} b_{j+1} \ldots b_{i-1} \cdot\left(\sum_{i=0}^{n} b_{i} \ldots b_{n} b_{0} \ldots b_{i-1}\right)^{s}
$$

Finally, multiplication is induced by the product in the ring of n-by- n matrices with entries in the Cox ring $k\left[x_{i}, y_{j}\right]$ which then gives the desired isomorphism with $\mathcal{A}\left(T^{*} S^{1}, D\right)$.

One can also perform this calculation entirely within the category of Cohen-Macaulay modules over $\mathcal{O}_{\mathcal{Y}_{0}}$; for details, see the forthcoming work of Zhang 40.
§4.7 Corollary (Base-change). Let S be a finitely generated R-algebra. Let $\mathcal{Y}_{S, 0}=$ $\operatorname{Spec}\left(\mathcal{O}_{\mathcal{Y}_{0}} \otimes_{R} S\right)$ and consider the diagram

where \mathcal{Y}_{S} is the fibre product. The pullback $j^{*} \mathcal{V}$ is a tilting bundle on \mathcal{Y}_{S} with End $_{\mathcal{Y}_{S}}\left(j^{*} \mathcal{V}\right) \cong$ $\mathcal{A}\left(T^{*} S^{1}, D\right) \otimes_{R} S$. In particular, by $\$ 1.7(B)$, the derived category of perfect modules on \mathcal{Y}_{S} inherits an action of $\Gamma\left(T^{*} S^{1}, D\right)$.

Proof. The map $\mathcal{Y} \rightarrow \operatorname{Spec}(R)$ is a conic fibration over \mathbb{A}^{n+1} with equidimensional fibres and smooth (in particular, Cohen-Macaulay) total space, hence flat. The endomorphism bundle $\operatorname{End}_{\mathcal{Y}}(\mathcal{V})$ is a locally free $\mathcal{O}_{\mathcal{Y}}$-module, so \mathcal{V} is flat over $\operatorname{Spec}(R)$ by [6, Lemma 2.2]. By [6, Lemma 2.9], this implies that $j^{*} \mathcal{V}$ is a tilting bundle with $\operatorname{End}_{\mathcal{Y}_{S}}\left(j^{*} \mathcal{V}\right) \cong$ $g_{*} \operatorname{End}_{\mathcal{Y}_{S}}\left(j^{*} \mathcal{V}\right) \cong i^{*} f_{*} \operatorname{End}_{\mathcal{Y}}(\mathcal{V}) \cong i^{*} \mathcal{A}\left(T^{*} S^{1}, D\right) \cong \mathcal{A}\left(T^{*} S^{1}, D\right) \otimes_{R} S$. This base-change formula is used in the proof of [6, Lemma 2.9] but can also be found in [22, Lemma 2.10] where the pullbacks are left-derived; in our case all the modules are either free or locally free, so derived pullback equals pullback.

5 A 1-d picture of a 3-d sphere

We conclude by discussing an example which displays how one can draw 1-dimensional pictures corresponding to sheaves on the higher dimensional mirrors. Let $n=1$; in this case \mathcal{Y} is the usual small-resolved conifold which is the total space of the vector bundle
$\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ over \mathbb{P}^{1}. The pushforward of the structure sheaf of \mathbb{P}^{1} is well-known to be a 3 -spherical object S in $D^{b} \operatorname{coh}(\mathcal{Y})$. It can be resolved by line bundles as follows:

$$
\mathcal{O}(2) \xrightarrow{\left(y_{0},-x_{1}\right)} \mathcal{O}(1)^{\oplus 2} \xrightarrow{\left(x_{1}, y_{0}\right)} \mathcal{O}
$$

and $\mathcal{O}(2)$ in turn is equivalent to $\mathcal{O} \xrightarrow{\left(x_{0}, y_{1}\right)} \mathcal{O}(1)^{\oplus 2}$, where $\mathcal{O}(i)$ denote the line bundles on \mathcal{Y} with degree i on \mathbb{P}^{1}. We can, therefore, express the mirror to the 3 -spherical object S, in terms of the generators of $\mathcal{W}\left(T^{*} S^{1}, D\right)$ and then work out, using the surgery exact triangle on the A-side, which immersed Lagrangian it corresponds to. In Figure 7, the thick curve is this immersed Lagrangian. Note that this immersed Lagrangian is unobstructed: it does bound four "teardrops" (monogons) which would contribute to the curved A_{∞}-operation μ_{0}, but these appear in cancelling pairs passing through the same marked point (and hence weighted by the same variable).

The gray curve is a small pushoff. The Floer complex between these two curves has eight generators, living in the following degrees:

$$
\begin{array}{c|cccccc}
\text { degree } & -2 & -1 & 0 & 1 & 2 & 3 \\
\text { generators } & y & x, z & e & m & \bar{x}, \bar{z} & \bar{y}
\end{array}
$$

The Floer differential can be computed as follows:

$$
\begin{array}{lrrl}
\partial y & =t_{1} z-t_{0} x, & \partial x & =t_{1} e, \\
\partial e & =0, & \partial m & =t_{1} \bar{x}-t_{0} \bar{z} \\
\partial \bar{x} & =t_{1} \bar{y}, & \partial \bar{z} & =t_{0} \bar{y},
\end{array} \quad \partial \bar{y}=t_{0} e .
$$

which yields cohomology of $k\left[t_{0}, t_{1}\right] /\left(t_{0}, t_{1}\right)=k$ in degrees 0 and 3 .

Figure 7: A 3-spherical object in $\mathcal{W}\left(T^{*} S^{1}, D\right)$ where $|D|=2$. The gray curve is a small pushoff, used to compute the Floer complex.

It is also possible to verify directly that this immersed Lagrangian corresponds to a simple module of $\mathcal{A}\left(T^{*} S^{1}, D\right)$ dual to L_{0}.

6 Derived contraction algebra

§6.1 Let \mathcal{Y}_{0} be a 3 -fold compound Du Val singularity admitting a small resolution \mathcal{Y}. The derived contraction algebra of \mathcal{Y} is an enhancement of the contraction algebra Λ of Donovan and Wemyss [10] in the sense that $\Lambda=H^{0}(\Gamma)$. The derived contraction algebra can be understood as the Drinfeld localisation of the endomorphism algebra End (\mathcal{V}) of the tilting bundle on \mathcal{Y} with respect to the idempotent $e=\mathrm{id}_{\mathcal{O}_{\mathcal{y}}}$ corresponding to the structure sheaf $\mathcal{O}_{\mathcal{y}}$. Recall that the Drinfeld localisation is given by

$$
\operatorname{End}(\mathcal{V})_{e}=\operatorname{End}(\mathcal{V})\langle\epsilon\rangle /(\epsilon e=e \epsilon=\epsilon, d \epsilon=e),
$$

that is we freely introduce an element ϵ to $\operatorname{End}\left(\mathcal{O}_{\mathcal{Y}}\right)$ of degree -1 with $d \epsilon=e$. This kills the corresponding object in $D^{b}(\operatorname{End}(\mathcal{V})) \simeq D^{b}(\mathcal{Y})$ after localisation:

$$
\operatorname{perf}\left(\operatorname{End}(\mathcal{V})_{e}\right) \simeq D^{b}(\mathcal{Y}) /\left\langle\mathcal{O}_{\mathcal{Y}}\right\rangle
$$

$\S 6.2$ Let us consider the case of a compound A_{N} singularity. Recall that in this case we have a 3 -fold singularity given by $u v=f_{0}(x, y) f_{1}(x, y) \ldots f_{n}(x, y)$. The relative Fukaya category is derived equivalent to the algebra $\mathcal{A}\left(T^{*} S^{1}, D\right) \otimes_{R} S$ where $S:=k[x, y]$ is viewed as an R-algebra by the homomorphism $t_{i} \rightarrow f_{i}(x, y)$. By Corollary $\S 4.7, \mathcal{A}\left(T^{*} S^{1}, D\right) \otimes_{R} S$ is isomorphic to the algebra $\operatorname{End}_{Y_{S}}\left(j^{*} \mathcal{V}\right)$ of endomorphisms of the tilting bundle $j^{*} V=$ $\mathcal{O}_{Y_{S}} \oplus j^{*} \mathcal{M}$. Hence the derived contraction algebra is given by

$$
\left(\mathcal{A}\left(T^{*} S^{1}, D\right) \otimes_{R} S\right)_{e_{0}}, \quad e_{0}=\operatorname{id}_{L_{0}} .
$$

That is, the localisation of $D^{b}\left(\mathcal{Y}_{S}\right)$ away from $\mathcal{O}_{Y_{S}}$ corresponds to localisation away from the Lagrangian L_{0} in the relative Fukaya category $\mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} S$. In the remainder of this section, we will give an alternative, more geometric, description of the derived contraction algebra in terms of the relative Fukaya category of a disc.
§6.3 Theorem. Let Δ be the disc obtained by excising L_{0} from $T^{*} S^{1}$ (Figure 8). The derived contraction algebra of a 3-fold compound A_{n} singularity is quasi-equivalent to the endomorphism algebra of $\bigoplus_{i=1}^{n} L_{i}$ in the relative Fukaya category $\mathcal{W}(\Delta, D) \otimes_{R} S$.

Proof. We can think of the annulus $T^{*} S^{1}$ as the result of attaching a Weinstein 1-handle to the disc, with L_{0} as the cocore of the handle. By Ganatra, Pardon and Shende [14, Proposition 11.2], this means that the localisation

$$
\left(\mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} S\right) /\left\langle L_{0}\right\rangle
$$

is quasi-equivalent to the relative Fukaya category of the disc Δ we get by excising L_{0} from $T^{*} S^{1}$. This proves the theorem.

Figure 8: Relative Fukaya category of the disc as a localisation.
§6.4 A model for the derived contraction algebra. We now give a model for the A_{∞}-algebra $\operatorname{End}_{\mathcal{W}(\Delta, D)}\left(\bigoplus_{i=1}^{n} L_{i}\right)$. This can be calculated directly. It is given by taking the R-linear path algebra of the following quiver

imposing the relations (coming from the quadrilaterals with boundary $b_{i} \cup L_{i} \cup a_{i} \cup L_{i+1}$ in Δ):

$$
\begin{aligned}
b_{i} a_{i}=t_{i} e_{i}, a_{i} b_{i} & =t_{i} e_{i+1}, \text { for } i=1, \ldots, n-1, \\
\alpha^{2} & =0, \quad \beta^{2}=0,
\end{aligned}
$$

and defining the differential (coming from the bigons with boundary $\alpha \cup L_{1}$ and $L_{n} \cup \beta$) by

$$
d a_{i}=d b_{i}=0 \text { for } i=1, \ldots, n-1, \quad d \alpha=t_{0} e_{1}, \quad d \beta=t_{n} e_{n}
$$

extending to longer paths by the graded Leibniz rule. Note that $a_{i}, b_{i}, i=1, \ldots, n-1$, are in degree zero whilst α and β are in degree -1 .

To see that there are no higher products, we appeal to a Maslov index calculation of Ozsváth and Szabo [29, Proposition 6.2] who studied these relative categories in the context of Heegaard-Floer theory (where it is called the pong algebra). A rigid $(k+1)$-gon contributing to a μ_{k} joperation has Maslov index $2-k$; Ozsváth and Szabo show that the Maslov index of a holomorphic disk u with boundaries on L_{1}, \ldots, L_{n} is given by
$\operatorname{mult}\left(u, z_{1}\right)+\operatorname{mult}\left(u, z_{n}\right)$, which is non-negative since u is holomorphic. It follows that $k \leq 2$. A similar argument appears in [3, Proposition 3.6].
§6.5 Remark. The relative wrapped Fukaya category $\mathcal{W}(\Delta, D)$ is acted on by its center given by its Hochschild cohomology which can be identified with the symplectic cohomology $S H(\Delta, D)$. There is a closed orbit η that corresponds to the boundary of Δ which has degree -2 . Thus, $\mathcal{W}(\Delta, D)$ can be seen as a category over $k[\eta]$. This recovers the familiar structure of the derived contraction algebra studied in detail in [17, Section 6].
§6.6 Example. We can compute the case where $n=1$ and $f_{0}=x, f_{1}=y$. This corresponds to the conifold singularity. We get that $\Gamma=k[x, y]\langle\alpha, \beta\rangle$ with $\alpha^{2}=\beta^{2}=0$, $d \alpha=x$ and $d \beta=y$. It is easy to determine that $H^{*}(\Gamma)=k[\eta]$ with $\eta=\alpha \beta+\beta \alpha$ of degree -2. This coincides with Booth's calculation [5, Section 4.2].
§6.7 Example. Consider the Pagoda flop $f_{0}=y+x^{n}, f_{1}=y-x^{n}$. Our model for the derived contraction algebra gives

$$
k[x, y]\langle\alpha, \beta\rangle /\left(\alpha^{2}, \beta^{2}\right), \quad d \alpha=y+x^{n}, d \beta=y-x^{n} .
$$

Assuming we are not in characteristic 2, we can define

$$
\zeta_{1}=(\alpha+\beta) / 2, \quad \zeta_{2}=(\alpha-\beta) / 2
$$

so that $d \zeta_{1}=y$ and $d \zeta_{2}=x^{n}$. This DG-algebra is isomorphic to the graded commutative algebra

$$
k\left[x, y, \zeta_{1}, \zeta_{2}\right] /\left(\zeta_{1}^{2}+\zeta_{2}^{2}\right), \quad d \zeta_{1}=y, d \zeta_{2}=x^{n}
$$

Now, it is easy to see that the map from

$$
k[x, \zeta], \quad d \zeta=x^{n}
$$

sending $\zeta \rightarrow \zeta_{2}$ and $x \rightarrow x$ is a quasi-isomorphism. This latter model for the derived contraction algebra of the Pagoda flop is given by Booth in [5, Lemma 4.3.8]. Note that in characteristic 2 , the class $x^{n} \in H^{0}(\Gamma)$ is non-trivial, so the assumption on characteristic is important here.
§6.8 Example. Consider the 3 -fold $u v=x y\left(x^{2}+y^{3}\right)$. This has six different partial resolutions corresponding to different permutations of

$$
f_{1}=x, f_{2}=x^{2}+y^{3}, f_{3}=y .
$$

We just focus on this particular choice and compare the answer our model gives for $\Lambda=$ $H^{0}(\Gamma)$ with that computed by August [2, Example 4.5, Figure 2]. Our model gives an algebra over $k[x, y]$ described by the following quiver:

with differential

$$
d \alpha=x e_{1}, \quad d \beta=y e_{2},
$$

and relations

$$
a_{1} b_{1}=\left(x^{2}+y^{3}\right) e_{1}, \quad b_{1} a_{1}=\left(x^{2}+y^{3}\right) e_{2}, \quad \alpha^{2}=0, \quad \beta^{2}=0 .
$$

At the chain level, in degree zero, we have the free $k[x, y]$-module spanned by $e_{1}, e_{2}, a_{1}, b_{1}$. We need to quotient by

$$
x e_{1}, \quad y e_{2}, \quad a_{1} b_{1}=\left(x^{2}+y^{3}\right) e_{1}, \quad b_{1} a_{1}=\left(x^{2}+y^{3}\right) e_{2} .
$$

The quotient algebra is therefore generated by $m:=y e_{1}, \ell:=x e_{2}, a:=b_{1}, c:=a_{1}$ and these satisfy precisely the relations

$$
\ell^{2}=a c, \quad m^{3}=c a, \quad \ell a=a m=c \ell=m c=0
$$

given for $B_{\text {con }}$ in [2, Figure 2]. For example:

$$
m^{3}=y^{3} e_{1}=\left(y^{3}+x^{2}\right) e_{1}=a_{1} b_{1}=c a
$$

A Generation of the relative Fukaya category

§A. 1 Proposition Let $\mathfrak{m}=\left(t_{0}, \ldots, t_{n}\right) \subset R$ be the maximal ideal and write k for the module R / \mathfrak{m}. The category $\mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} k$ is split-generated by the Lagrangian arcs L_{0}, \ldots, L_{n}.

Proof. There is a tautological identification of $\mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} R / \mathfrak{m}$ with the full subcategory

$$
\mathcal{B}(D) \subset \mathcal{W}\left(T^{*} S^{1} \backslash D\right)
$$

corresponding to Lagrangian branes which do not go near the punctures along D. The manifold $T^{*} S^{1} \backslash D$ is a $(n+3)$-punctured sphere with the grading structure restricted from the standard one on $T^{*} S^{1}$. In [24], a mirror equivalence was established giving

$$
\mathcal{W}\left(T^{*} S^{1} \backslash D\right) \simeq D^{b} \operatorname{coh}(C)
$$

where $C=\mathbb{A}^{1} \cup_{p t} \mathbb{P}^{1} \cup_{p t} \mathbb{P}^{1} \ldots \cup_{p t} \mathbb{P}^{1} \cup_{p t} \mathbb{A}^{1}$ is a nodal curve with $n+2$ irreducible toric components glued together at the toric fixed points. Under this equivalence, the full subcategory $\mathcal{B}(D)$ gets identified with the full subcategory $\operatorname{perf}(C) \subset D^{b} \operatorname{coh}(C)$, and the

Lagrangians L_{i} go to line bundles \mathcal{L}_{i} on C. In particular, one can arrange that \mathcal{L}_{0} is the trivial bundle (i.e. the structure sheaf \mathcal{O}_{C}).
In the case $n=0$, the mirror curve C is simply the affine curve $\mathbb{A}^{1} \cup_{p t} \mathbb{A}^{1}=\operatorname{Spec} k[x, y] /(x y)$, and the category $D^{b} \operatorname{coh}(C)$ is quasi-equivalent to the derived category of modules over $\operatorname{End}\left(\mathcal{O}_{C}\right)$. The subcategory of perfect objects is then generated by $\operatorname{End}\left(\mathcal{O}_{C}\right)$ itself [36, Lemma 15.78.1].
For higher n, there is an $n+1$-fold covering map $\pi: T^{*} S^{1} \backslash D \rightarrow T^{*} S^{1} \backslash\{p\}$ which respects the grading. The graph of π is a Lagrangian submanifold of $\left(T^{*} S^{1} \backslash D\right)^{-} \times\left(T^{*} S^{1} \backslash\{p\}\right)$ (where - indicates that we reverse the sign of the symplectic form on this factor). This induces triangulated A_{∞} quilt functors

$$
\pi_{*}: \mathcal{W}\left(T^{*} S^{1} \backslash D\right) \rightarrow \mathcal{W}\left(T^{*} S^{1} \backslash\{p\}\right) \quad \text { respectively } \quad \pi^{*}: \mathcal{W}\left(T^{*} S^{1} \backslash\{p\}\right) \rightarrow \mathcal{W}\left(T^{*} S^{1} \backslash D\right)
$$

Geometrically, a Lagrangian brane is sent under π_{*}, respectively π^{*}, to its (possibly immersed) image, respectively preimage, under π. These functors restrict to give functors

$$
\pi_{*}: \mathcal{B}(D) \rightarrow \mathcal{B}(p) \quad \text { respectively } \quad \pi^{*}: \mathcal{B}(p) \rightarrow \mathcal{B}(D)
$$

Given an object of $\mathcal{B}(D)$, it follows as in [32, Section 9] that the object $\pi^{*} \pi_{*}(L)$ is the sum $\bigoplus_{g \in G} g(L)$ where G is the deck group of the covering map π.
Write L_{0}, \ldots, L_{n} for the arcs in $T^{*} S^{1} \backslash D$ and \bar{L}_{0} for the arc in $T^{*} S^{1} \backslash\{p\}$. By the $n=0$ case of the proposition, if $L \in \mathcal{B}(D)$ then $\pi_{*}(L)$ is generated by $\bar{L}_{0} \subset T^{*} S^{1} \backslash\{p\}$. Therefore $\bigoplus_{G} g(L)$ is generated by $\pi^{*} \bar{L}_{0}=\bigoplus_{i=0}^{n} L_{i}$, and since L is a summand of $\bigoplus_{g \in G} g(L)$, we see that L is split-generated by $\bigoplus_{i=0}^{n} L_{i}$, as required.
§A. 2 Remark. Obviously, the Lagrangians L_{0}, \ldots, L_{n} do not generate $\mathcal{W}\left(T^{*} S^{1} \backslash D\right)$, since the Lagrangian branes that are allowed in $\mathcal{W}\left(T^{*} S^{1} \backslash D\right)$ can have ends near the punctures along D.
§A. 3 Proposition (Generation with coefficients). Let L be an object of $\mathcal{W}\left(T^{*} S^{1}, D\right)$. If L generates $\mathcal{W}_{0}\left(T^{*} S^{1}, D\right):=\mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} R / \mathfrak{m}$ then it also generates the relative wrapped category with coefficients in \bar{R}, that is $\mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} \bar{R}$.

As a corollary, the category $\mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} \bar{R}$ is split-generated by the Lagrangian arcs L_{0}, \ldots, L_{n}. The proof of this proposition will take up the rest of the appendix.
§A. 4 Proof. Let

$$
\overline{\mathcal{A}}=\operatorname{End}_{\mathcal{W}\left(T^{*} S^{1}, D\right)}(L) \otimes_{R} \bar{R}, \quad \mathcal{A}_{0}=\operatorname{End}_{\mathcal{W}_{0}\left(T^{*} S^{1}, D\right)}(L)=\operatorname{End}_{\mathcal{W}\left(T^{*} S^{1}, D\right)}(L) \otimes_{R} R / \mathfrak{m}
$$

We have Yoneda-type functors

$$
\bar{Y}: \mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} \bar{R} \rightarrow \bmod (\overline{\mathcal{A}})
$$

and

$$
Y_{0}: \mathcal{W}_{0}\left(T^{*} S^{1}, D\right) \rightarrow \bmod \left(\mathcal{A}_{0}\right)
$$

The module $Y_{0}(L)=\mathcal{A}_{0}$ (respectively $\left.\bar{Y}(L)=\overline{\mathcal{A}}\right)$ generates the subcategory perf $\left(\mathcal{A}_{0}\right)$ (respectively $\operatorname{perf}(\overline{\mathcal{A}}))$ of perfect objects. Since L generates $\mathcal{W}_{0}\left(T^{*} S^{1}, D\right)$, the functor Y_{0} lands in $\operatorname{perf}\left(\mathcal{A}_{0}\right)$ and corestricts to give a quasi-equivalence

$$
Y_{0}: \mathcal{W}_{0}\left(T^{*} S^{1}, D\right) \rightarrow \operatorname{perf}\left(\mathcal{A}_{0}\right)
$$

(i.e. the induced functor on homotopy categories is fully faithful and essentially surjective). We want to show that
(a) \bar{Y} lands in $\operatorname{perf}(\overline{\mathcal{A}})$;
(b) the induced functor $H(\bar{Y})$ on homotopy categories is (i) essentially surjective and (ii) fully faithful.
§A.5 Proof of (a): The subcategory $\operatorname{perf}(\overline{\mathcal{A}}) \subset \bmod (\overline{\mathcal{A}})$ is precisely the triangulated subcategory of compact objects (see for example [36, Proposition 15.78.3]). An object C in a pre-triangulated A_{∞} category is compact if and only if the functor it corepresents $\operatorname{hom}(C$,$) preserves coproducts, that is,$

$$
\oplus_{i} \operatorname{hom}\left(C, E_{i}\right)=\operatorname{hom}\left(C, \oplus_{i} E_{i}\right)
$$

for arbitrary direct sums $\oplus_{i} E_{i}$. So it suffices to show that if $K \in \mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} \bar{R}$ is an object then

$$
\oplus_{i} \operatorname{hom}_{\bmod (\overline{\mathcal{A}})}\left(\bar{Y}(K), E_{i}\right)=\operatorname{hom}_{\bmod (\overline{\mathcal{A}})}\left(\bar{Y}(K), \oplus_{i} E_{i}\right)
$$

for arbitrary direct sums $\oplus_{i} E_{i}$ in $\bmod (\overline{\mathcal{A}})$.
The complexes $\oplus_{i} \operatorname{hom}_{\bmod (\overline{\mathcal{A}})}\left(\bar{Y}(K), E_{i}\right)$ and $\operatorname{hom}_{\bmod (\overline{\mathcal{A}})}\left(\bar{Y}(K), \oplus_{i} E_{i}\right)$ are complete filtered \bar{R}-modules with the filtration coming from the action of powers of the maximal ideal; the canonical map

$$
\begin{equation*}
\oplus_{i} \operatorname{hom}_{\bmod (\overline{\mathcal{A}})}\left(\bar{Y}(K), E_{i}\right) \rightarrow \operatorname{hom}_{\bmod (\overline{\mathcal{A}})}\left(\bar{Y}(K), \oplus_{i} E_{i}\right) \tag{A.1}
\end{equation*}
$$

is a morphism of filtered complexes. There are therefore spectral sequences computing both sides, and a morphism of spectral sequences induced by A.1). By the Eilenberg-Moore comparison theorem, it suffices to check that this morphism is an isomorphism on the E_{0} pages. Note that Eilenberg-Moore requires completeness of the filtration, which is why we are working over \bar{R} instead of R.

The E_{0} pages are respectively

$$
E_{0}^{p q}=\oplus_{i} \operatorname{hom}_{\bmod \left(\mathcal{A}_{0}\right)}^{p+q}\left(Y_{0}(K), \operatorname{gr}^{p}\left(E_{i}\right)\right) \text { and } E_{0}^{p q}=\operatorname{hom}_{\bmod \left(\mathcal{A}_{0}\right)}^{p+q}\left(Y_{0}(K), \oplus_{i} \operatorname{gr}^{p}\left(E_{i}\right)\right)
$$

where gr^{p} denotes the p th graded piece of the associated graded module. The morphism on E_{0}-pages is induced by the canonical map

$$
\oplus_{i} \operatorname{hom}_{\bmod \left(\mathcal{A}_{0}\right)}\left(Y_{0}(K), \operatorname{gr}\left(E_{i}\right)\right) \rightarrow \operatorname{hom}_{\bmod \left(\mathcal{A}_{0}\right)}\left(Y_{0}(K), \oplus_{i} \operatorname{gr}\left(E_{i}\right)\right)
$$

Since $Y_{0}(K)$ is perfect, this is an isomorphism, which proves (a).
§A. 6 Proof of (b.i): We have $\overline{\mathcal{A}}=\bar{Y}(L)$, and since $\overline{\mathcal{A}}$ generates perf $(\overline{\mathcal{A}})$, the essential image of \bar{Y} in $\bmod (\overline{\mathcal{A}})$ contains $\operatorname{perf}(\overline{\mathcal{A}})$.
§A. 7 Proof of (b.ii): Given objects $K, K^{\prime} \in \mathcal{W}\left(T^{*} S^{1}, D\right) \otimes_{R} \bar{R}$, the complexes

$$
C F\left(K, K^{\prime}\right) \otimes_{R} \bar{R} \quad \text { and } \quad \operatorname{hom}_{\bmod (\overline{\mathcal{A}})}\left(\bar{Y}(K), \bar{Y}\left(K^{\prime}\right)\right)
$$

are filtered by powers of the maximal ideal. These filtrations give us spectral sequences and the functor \bar{Y} gives a map of filtered complexes $C F\left(K, K^{\prime}\right) \otimes_{R} \bar{R} \rightarrow \operatorname{hom}_{\bmod (\overline{\mathcal{A}})}\left(\bar{Y}(K), \bar{Y}\left(K^{\prime}\right)\right)$ and hence a morphism of spectral sequences. On the E_{1} page this is just the map

$$
H\left(\operatorname{hom}_{\mathcal{W}_{0}\left(T^{*} S^{1}, D\right)}\left(K, K^{\prime}\right)\right) \otimes_{R} \operatorname{gr}(\bar{R}) \rightarrow H\left(\operatorname{hom}_{\bmod \left(\mathcal{A}_{0}\right)}\left(Y_{0}(K), Y_{0}\left(K^{\prime}\right)\right)\right) \otimes_{R} \operatorname{gr}(\bar{R})
$$

induced from $H\left(Y_{0}\right): H\left(\operatorname{hom}_{\mathcal{W}_{0}\left(T^{*} S^{1}, D\right)}\left(K, K^{\prime}\right)\right) \rightarrow H\left(\operatorname{hom}_{\bmod \left(\mathcal{A}_{0}\right)}\left(Y_{0}(K), Y_{0}\left(K^{\prime}\right)\right)\right.$) (because any polygons which pass through the marked points have their contributions weighted by an element of $\mathfrak{m})$. This is an isomorphism because Y_{0} is cohomologically full and faithful. The Eilenberg-Moore comparison theorem then implies that the map $H(\bar{Y})$ is an isomorphism, which proves that \bar{Y} is cohomologically full and faithful.

References

[1] M. Abouzaid and P. Seidel. An open string analogue of Viterbo functoriality. Geom. Topol., 14(2):627-718, 2010.
[2] J. August. On the finiteness of the derived equivalence classes of some stable endomorphism rings. Math. Z. 296(3-4)1157-1183, 2020.
[3] D. Auroux. Fukaya categories of symmetric products and bordered Heegaard-Floer homology. J. Gökova Geom. Topol. GGT 4 (2010), 1-54.
[4] R. Bocklandt. A gentle introduction to homological mirror symmetry, volume 99 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2021.
[5] M. Booth. The derived contraction algebra. arXiv:1903.12156, 2019.
[6] R.-O. Buchweitz, and L. Hille. Hochschild (co-)homology of schemes with tilting object Trans. Amer. Math. Soc., 365(6):2823-2844, 2013.
[7] R. Bezrukavnikov, S. Riche. Affine braid group actions on derived categories of Springer resolutions, Ann. Sci. Éc. Norm. Supér., (4)45(2012), no.4, 535-599.
[8] V. Drinfeld. DG quotients of DG categories, J. Algebra 272(2004), no.2, 643-691.
[9] W. Donovan and E. Segal. Mixed braid group actions from deformations of surface singularities. Comm. Math. Phys., 335(1):497-543, 2015.
[10] W. Donovan and M. Wemyss. Noncommutative deformations and flops. Duke Math. J., 165(8):1397-1474, 2016.
[11] T. Ekholm and Y. Lekili. Duality between Lagrangian and Legendrian invariants. arXiv:1701.01284, to appear in Geometry $\&$ Topology, 2017.
[12] W. Fulton. Introduction to toric varieties. Annals of Mathematics Studies, Number 131. Princeton University Press, Princeton, NJ, 1993.
[13] A. Gadbled, A.-L. Thiel, and E. Wagner. Categorical action of the extended braid group of affine type A. Commun. Contemp. Math., 19(3):1650024, 39, 2017.
[14] S. Ganatra, J. Pardon, and V. Shende Sectorial descent for wrapped Fukaya categories arXiv:1809.03427, 2018.
[15] F. Haiden, L. Katzarkov, and M. Kontsevich. Flat surfaces and stability structures. Publ. Math. Inst. Hautes Études Sci., 126:247-318, 2017.
[16] Z. Hua. Contraction algebra and singularity of three-dimensional flopping contraction. Math. Z. 290(1-2):431-443, 2018.
[17] Z. Hua and B. Keller Cluster categories and rational curves. arXiv:1810.00749 to appear in Geom. Topol.
[18] Z. Hua and Y. Toda. Contraction algebra and invariants of singularities. Int. Math. Res. Not. IMRN Volume 2018 No. 10 pp. 3173-3198, 2018.
[19] A. Ishii and K. Ueda Dimer models and exceptional collections. arXiv:0911.4529, 2009.
[20] O. Iyama and M. Wemyss. Reduction of triangulated categories and maximal modification algebras for $c A_{n}$ singularities. J. Reine Angew. Math., 738:149-202, 2018.
[21] M. Kalck and D. Yang. Relative singularity categories II: DG models. arXiv:1803.08192, 2018.
[22] J. Karmazyn Deformations of algebras defined by tilting bundles. J. Algebra 513:388434, 2018.
[23] Y. Lekili and A. Polishchuk. Arithmetic mirror symmetry for genus 1 curves with n marked points. Selecta Math. (N.S.), 23(3):1851-1907, 2017.
[24] Y. Lekili and A. Polishchuk. Auslander orders over nodal stacky curves and partially wrapped Fukaya categories. J. Topol., 11(3):615-644, 2018.
[25] Y. Lekili and A. Polishchuk. Homological mirror symmetry for the symmetric squares of punctured spheres. Adv. Math., 418:Paper No. 108942, 63, 2023.
[26] Y. Lekili and E. Segal. Equivariant Fukaya categories at singular values. arXiv:2304.10969, 2023.
[27] Y. Lekili and D. Treumann. A symplectic look at the Fargues-Fontaine curve. Forum Math. Sigma 10 (2022), 40 pp.
[28] P. Ozsváth and Z. Szabó. Holomorphic disks and topological invariants for closed three-manifolds. Ann. of Math. (2), 159(3):1027-1158, 2004.
[29] P. Ozsváth and Z. Szabó. The Pong algebra and wrapped Fukaya category https://arxiv.org/abs/2212.14420, 2022.
[30] T. Perutz and N. Sheridan. Constructing the relative Fukaya category. arXiv:2203.15482, 2022.
[31] P. Seidel. Fukaya categories and Picard-Lefschetz theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.
[32] P. Seidel. Homological mirror symmetry for the genus two curve. J. Algebraic Geom., 20(4):727-769, 2011.
[33] P. Seidel. Homological mirror symmetry for the quartic surface. Mem. Amer. Math. Soc., 236(1116):vi+129, 2015.
[34] P. Seidel and R. Thomas. Braid group actions on derived categories of coherent sheaves. Duke Math. J., 108(1):37-108, 2001.
[35] N. Sheridan. Versality of the relative Fukaya category. Geom. Topol., 24(2):747-884, 2020.
[36] The Stacks Project authors. The Stacks Project. https://stacks.math.columbia. edu, 2023.
[37] Z. Sylvan. On partially wrapped Fukaya categories. J. Topol., 12(2):372-441, 2019.
[38] M. Van den Bergh. Three-dimensional flops and noncommutative rings. Duke Math. J., 122(3):423-455, 2004.
[39] M. Wemyss. Chapter IV. Noncommutative resolutions. In Noncommutative Algebraic Geometry, M.S.R.I. Publications, Vol. 64. Eds. G. Bellamy, D. Rogalski, T. Schedler, J. T. Stafford, M. Wemyss. Cambridge University Press, Cambridge, 2016.
[40] H. Zhang. In preparation, 2023.
J. D. Evans, University of Lancaster
j.d.evans@lancaster.ac.uk
Y. Lekili, Imperial College London
y.lekili@imperial.ac.uk

[^0]: ${ }^{1}$ to get R-linearity.
 ${ }^{2}$ to get the deformation.

[^1]: ${ }^{3}$ Indices are taken to belong to the cyclic group $\mathbb{Z} /(n+1)$.

[^2]: ${ }^{4}$ The authors of [15] state this formula for μ_{k} with $k \geq 3$ only because they do not have any quadrilaterals like D_{i} in [15].

[^3]: ${ }^{5}$ Gadbled, Thiel and Wagner treat the inner boundary as a puncture, so do not need δ.

[^4]: ${ }^{6}$ We will write twisted complexes horizontally and morphisms between them vertically.

