Equivariant Fukaya categories at singular values

Yankı Lekili

an evolving work with Ed Segal

M-Seminar
(online via BBB)

Dec 2022

Equivariant cohomology

There is a contravariant functor from manifolds M with an S^{1} action to graded vector spaces $M \rightarrow H_{S^{1}}^{*}(M)$ that satisfies the following properties:
i. If the action on M is free, then $H_{S^{1}}^{*}(M)=H^{*}\left(M / S^{1}\right)$.
ii. If $f: M_{1} \rightarrow M_{2}$ is an equivariant map inducing a homotopy equivalence, then $f^{*}: H_{S^{1}}^{*}\left(M_{2}\right) \rightarrow H_{S^{1}}^{*}\left(M_{1}\right)$ is an isomorphism.
iii. If $M=U \cup V$ with U and V open invariant submanifolds of M, then there exists a long exact sequence
$\rightarrow H_{S^{1}}^{*-1}(U \cap V) \rightarrow H_{S^{1}}^{*}(M) \rightarrow H_{S_{1}^{1}}^{*}(U) \oplus H_{S^{1}}^{*}(V) \rightarrow H_{S^{1}}^{*}(U \cap V) \rightarrow$

Equivariant cohomology of a point •

$$
H_{S^{1}}^{*}(\bullet)=\mathbb{C}[t], \quad \operatorname{deg}(t)=2
$$

To see this we observe that the circle acts freely on $S^{\infty}=\left\{\left(z_{0}, z_{1}, \ldots\right) \in \mathbb{C}^{\infty}:\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\ldots=1\right\}$ by $e^{i \theta} \cdot\left(z_{0}, z_{1}, \ldots,\right)=\left(e^{i \theta} z_{0}, e^{i \theta} z_{1}, \ldots\right)$.

The infinite sphere is equivariantly contractible to a point, so we get

$$
H_{S^{1}}^{*}(\bullet)=H^{*}\left(S^{\infty} / S^{1}\right)=H^{*}\left(\mathbb{C} P^{\infty}\right)
$$

Every manifold with an S^{1} action has an S^{1}-equivariant map to the $p t$. Hence, $H_{S^{1}}(M)$ is in fact an $H_{S^{1}}^{*}(\bullet)$-module.

The 2-sphere

Consider S^{2}, we can cover it by $U=S^{2} \backslash\{0\}$ and $V=S^{2} \backslash\{\infty\}$. The Mayer-Vietoris sequence gives that
$0 \rightarrow H_{S^{1}}^{0}(U \cap V) \rightarrow H_{S^{1}}^{0}(U) \oplus H_{S^{1}}^{0}(V) \rightarrow H_{S^{1}}^{0}\left(S^{2}\right) \rightarrow H_{S^{1}}^{1}(U \cap V) \rightarrow 0$
and

$$
H_{S^{1}}^{i}\left(S^{2}\right) \simeq H_{S^{1}}^{i}(U) \oplus H_{S^{1}}^{i}(V) \text { for } i \geq 2 .
$$

It follows that

$$
H_{S_{1}}^{*}\left(S^{2}\right) \simeq \mathbb{C}[x, y] /(x y), \operatorname{deg}(x)=\operatorname{deg}(y)=2
$$

The $\mathbb{C}[t]$-action is given by multiplication by $t=x+y$. Setting $t=0$, we recover $H^{*}\left(S^{2}\right)$.

Hamiltonian S^{1}-action
$T^{*} S^{2}=\left\{x y+z^{2}=1\right\} \subset \mathbb{C}^{3}$, exact symplectic manifold.
Hamiltonian S^{1} action $e^{i \theta} \cdot(x, y, z) \rightarrow\left(e^{i \theta} x, e^{-i \theta} y, z\right)$

$$
\mathcal{W}_{S^{1}}\left(T^{*} S^{2}\right)
$$

S^{1}-equivariant wrapped Fukaya category
$S=S^{2}$ is an exact Lagrangian and fixed by the S^{1} action.

$$
H F_{S^{1}}^{*}\left(S^{2}, S^{2}\right)=H_{S^{1}}^{*}\left(S^{2}\right)=\mathbb{C}[x, y] /(x y), \quad \operatorname{deg}(x)=\operatorname{deg}(y)=2
$$

$T^{*} S^{2}$
\downarrow

Key observation
Λ is a non-compact Lagrangian in $\mathcal{P}=\mathbb{C} \backslash\{1,-1\}$ pair-of-pants

$$
H W^{*}(\Lambda, \Lambda)=\mathbb{C}[x, y] / x y
$$

with $\operatorname{deg}(x)=\operatorname{deg}(y)=2$ for a certain grading structure on \mathcal{P}.
This suggests that there is a quasi-equivalence of \mathbb{Z}-graded pre-triangulated categories:

$$
\mathcal{W}(\mathcal{P}) \simeq \mathcal{W}_{S^{1}}\left(T^{*} S^{2}\right)
$$

which we can prove, and we now formulate various generalisations.

Let $Y=\mathbb{C}^{n}$ or a more general Liouville manifold and $f: Y \rightarrow \mathbb{C}$ be a holomorphic map with 0 as a regular value.

Consider the conic fibration $\pi: X \rightarrow Y$ is defined on the smooth space

$$
X=\{(u, v, \mathbf{w}): u v=f(\mathbf{w})\}
$$

as the restriction of the projection $(u, v, \mathbf{w}) \rightarrow \mathbf{w}$. The generic fiber of $\pi: X \rightarrow Y$ is isomorphic to a smooth affine conic and it degenerates to a singular conic along the smooth hypersurface $D=\{f(\mathbf{w})=0\}$.

The space X admits an Hamiltonian S^{1} action given by rotating the fibers: $e^{i \theta} \cdot(u, v, \mathbf{w}) \rightarrow\left(e^{i \theta} u, e^{-i \theta} v, \mathbf{w}\right)$ for $e^{i \theta} \in S^{1}$.

Conjecture A We have a quasi-equivalence

$$
\mathcal{W}_{S^{1}}(X) \simeq \mathcal{W}(Y \backslash D)
$$

More generally, we can consider $f_{1}, f_{2}, \ldots, f_{r}: Y \rightarrow \mathbb{C}$ holomorphic maps with 0 as a regular value and that the hypersurfaces $\left\{f_{j}=0\right\}$ intersect in a normal crossing way. Then we can form the smooth space

$$
X=\left\{\left(u_{1}, v_{1}, \ldots, u_{r}, v_{r}, \mathbf{w}\right): u_{i} v_{i}=f_{i}(\mathbf{w}), \text { for } i=1, \ldots, r\right\}
$$

and the restriction of the projection $\left(u_{1}, v_{1}, \ldots, u_{r}, v_{r}, \mathbf{w}\right) \rightarrow \mathbf{w}$ defines an iterated conic bundle $\pi: X \rightarrow Y$ of rank r whose generic fiber is a product of smooth conics, hence is isomorphic to $\left(\mathbb{C}^{*}\right)^{r}$.

We also have Hamiltonian action of an r-dimensional torus T on X by rotating the fibers.

Conjecture A We have a quasi-equivalence

$$
\mathcal{W}_{T}(X) \simeq \mathcal{W}(Y \backslash D)
$$

Triviality of the deformation

If we delete the divisor $\pi^{-1} D$ from X then what remains is just a principal $\left(\mathbb{C}^{*}\right)^{r}$ bundle over $Y \backslash D$. So it is not too surprising that there should be a quasi-equivalence:

$$
\mathcal{W}_{T}\left(X \backslash \pi^{-1} D\right) \simeq \mathcal{W}(Y \backslash D)
$$

Indeed this fits with a more general story about Hamiltonian reduction that we will discuss next.

However, $\mathcal{W}_{T}(X)$ should be a deformation of $\mathcal{W}_{T}\left(X \backslash \pi^{-1} D\right)$, since including the extra divisor will add terms to the A_{∞} structure. From this point of view, Conjecture A is the claim that this deformation is in fact trivial.

Seidel's invertible elements

Suppose we have a Hamiltonian S^{1} action on a symplectic manifold X. The information of the S^{1} action appears in the Fukaya category as an invertible element (due to Seidel):

$$
s \in H H^{0}(\mathcal{W}(X))
$$

This is a natural automorphism of the identity functor, so for each object $L \in \mathcal{W}(X)$ it provides an automorphism $s_{L}: L \xrightarrow{\sim} L$.

Spectral components

The category that we denoted $\mathcal{W}_{S_{1}}(X)$ in the previous section has objects given by those L such that $s_{L}=1_{L}$.

In fact, for any fixed $\lambda \in \mathbb{C}^{*}$ one can construct a similar category

$$
\mathcal{W}_{S^{1}}(X)_{\lambda}
$$

by taking objects of $\mathcal{W}(X)$ such that $s_{L}=\lambda 1_{L}$.
Teleman refers to these categories as the 'spectral components' of the equivariant Fukaya category.

For example, an S^{1}-invariant Lagrangian L (which is monotone, has minimal Maslov at least 2, and is equipped with an appropriate spin structure) provides an object of $\mathcal{W}_{S^{1}}(X)_{1}$. But if we give L a non-trivial local system, whose monodromy along S^{1} orbits is λ, then we have an object of $\mathcal{W}_{S_{1}}(X)_{\lambda}$.

Hamiltonian reduction

Consider the Hamiltonian reduction $X / /{ }_{\alpha} S^{1}$ at some regular value $\alpha \in \mathbb{R}$ of the moment map. There is a Lagrangian correspondence

$$
\Gamma=\{(x, \pi(x)), \mu(x)=\alpha\} \subset X^{-} \times\left(X / / \alpha S^{1}\right)
$$

which induces a functor

$$
\mathcal{W}(X) \rightarrow \mathcal{W}\left(X / /{ }_{\alpha} S^{1}\right)
$$

Γ is S^{1}-invariant, so we can use it to define a functor on the equivariant Fukaya category of X. Teleman conjectures that this gives an equivalence

$$
\mathcal{W}_{S^{1}}(X)_{e^{\alpha}} \cong \mathcal{W}\left(X / /{ }_{\alpha} S^{1}\right)
$$

between the Fukaya category of the Hamiltonian reduction and the corresponding spectral component of the equivariant category. More generally, we can twist the quotient manifold by a \mathbf{B}-field β, and this will give the spectral component at $\lambda=e^{\alpha+i \beta}$. A theorem along these lines has been announced by Fukaya.

Let us see what this point-of-view brings to our example, the affine conic $T^{*} S^{2}=\left\{x y+z^{2}=1\right\}$.

The moment map is $\mu=|x|^{2}-|y|^{2}$. Any non-zero $\alpha \in \mathbb{R}$ is a regular value of μ, and produces the quotient \mathbb{C}. Since $\mathcal{W}(\mathbb{C}) \cong 0$ the spectral component

$$
\mathcal{W}_{S^{1}}(X)_{\lambda}=0 \text { for any } \lambda \text { with }|\lambda| \neq 1 .
$$

However, our observation is about the component at $\lambda=1$, and this corresponds to the singular value $\alpha=0$ where we cannot do symplectic reduction. But if we simply delete the singularities of the moment map fibre $\mu^{-1}(0)$ then the quotient becomes:

$$
\mathcal{P}=\left(\mu^{-1}(0)-(0,0, \pm 1)\right) / S^{1}
$$

Our observation is that $\mathcal{W}(\mathcal{P})$ is the correct spectral component $\mathcal{W}_{S_{1}}(X)_{1}$.

The other components $\lambda=e^{i \beta} \neq 1$ should correspond to a B-field on \mathcal{P} but there are none, and it turns out these categories vanish, as we shall see later.

We can state this melange of our + Teleman's observations as the following conjecture

Conjecture B. Let X be a Hamiltonian S^{1}-manifold with moment map μ and let α be a singular value in the interior of the moment interval. Under "appropriate hypotheses", there is a quasi-equivalence

$$
\mathcal{W}_{S^{1}}(X)_{e^{\alpha+i \beta}} \cong \mathcal{W}\left(U / S^{1}, \beta\right)
$$

where U is the smooth locus in $\mu^{-1}(\alpha)$.
Violation of "appropriate hypothesis" would in general mean that the category on the right hand side should be bulk deformed (as determined by the quantum Kirwan map).

Mirror Symmetry

Given a Hamiltonian S^{1} action on X, the Seidel element makes the wrapped Fukaya category $\mathcal{W}(X)$ linear over the ring $\mathbb{C}\left[s, s^{-1}\right]$.

Now suppose that X is mirror to an algebraic variety \breve{X}. Then, since $\mathcal{W}(X)=D^{b}(\breve{X})$, the mirror to s must be an invertible element σ in:

$$
H H^{0}\left(D^{b}(\check{X})\right)=\Gamma\left(\mathcal{O}_{\check{X}}\right)
$$

If we have an S^{1} action on the symplectic side then on the mirror we have a function $\sigma: \breve{X} \rightarrow \mathbb{C}^{*}$.

More generally X might be mirror to a Landau-Ginzburg model (\breve{X}, \breve{W}). Then $\mathcal{W}(X)$ is equivalent to the category of matrix factorizations $\operatorname{MF}(\breve{X}, \breve{W})$, but still a function $\sigma: \breve{X} \rightarrow \mathbb{C}^{*}$ does provide a natural automorphism of this category, so a possible mirror to the S^{1} action on X.

Mirror Symmetry conjecture

Conjecture C. Suppose we have a Hamiltonian S^{1} action on a symplectic manifold X. Suppose X has a mirror Landau-Ginzburg model (\breve{X}, \breve{W}), and that the S^{1} action is mirror to a function $\sigma: \breve{X} \rightarrow \mathbb{C}^{*}$. Then for every $\lambda \in \mathbb{C}^{*}$ we have an equivalence

$$
\mathcal{W}_{S^{1}}(X)_{\lambda} \cong \operatorname{MF}\left(\breve{Z}_{\lambda},\left.\breve{W}\right|_{\check{\Sigma}_{\lambda}}\right)
$$

where $\breve{Z}_{\lambda} \subset \breve{X}$ denotes the hypersurface $\sigma^{-1}(\lambda)$.
This claim will be central to all the mirror symmetry evidence however, it is not really a precise conjecture because we haven't specified what we mean by 'mirror'. In particular it's not enough to just assume that $\mathcal{W}(X) \cong \mathrm{MF}(\breve{X}, \breve{W})$. It might be better to read it as a definition of an ' S^{1}-equivariant homological mirror'.

A $\log \mathrm{CY}$ example

Consider

$$
X=\mathbb{C}^{2} \backslash\{z w=1\}
$$

equipped with the restriction of the standard symplectic form on \mathbb{C}^{2}. This is a log-Calabi Yau surface which is known to be self-mirror. We write

$$
\breve{X}=\mathbb{C}^{2} \backslash\{\breve{z} \breve{w}=1\}
$$

Hamiltonian S^{1} action on X by $e^{i \theta}(z, w)=\left(e^{i \theta} z, e^{-i \theta} w\right)$.
On \breve{X} this becomes the non-vanishing function:

$$
\sigma=1-\breve{z} \breve{W}
$$

If $\lambda \in \mathbb{C}^{*}$ with $\lambda \neq 1$ then $\sigma^{-1}(\lambda)=\mathbb{C}^{*}$. So the claim is that $\mathcal{W}_{S^{1}}(X)_{\lambda} \cong D^{b}\left(\mathbb{C}^{*}\right)$. But for $\lambda=1$, we're claiming that $\mathcal{W}_{S^{1}}(X)_{1}$ should be equivalent to the derived category of the node $\breve{Z}_{1}=\{\breve{z} \breve{w}=0\}$.

A $\log \mathrm{CY}$ example

Now what about the symplectic reductions? If we have $\lambda=e^{\alpha}$ for $\alpha \in \mathbb{R} \backslash 0$ then $\mathcal{W}_{S 1}(X)_{\lambda}$ should be the wrapped category of the Hamiltonian reduction of X at the moment-map value α. Since this quotient is \mathbb{C}^{*}, and \mathbb{C}^{*} is self-mirror, everything is consistent.

At the singular value $\alpha=0$ we can apply our Conjectures A or B , which tell us to delete the singularity from $\mu^{-1}(0)$ before we take the quotient. The result is $\mathbb{C}^{\times} \backslash\{1\}$ which is the pair-of-pants. This is indeed well known to be the mirror to \breve{Z}_{1}.

Recovering the non-equivariant category

Given S^{1} action on X we have for each $\lambda \in \mathbb{C}^{*}$ a spectral component $\mathcal{W}_{S^{1}}(X)_{\lambda}$ of the equivariant Fukaya category. These categories have some important extra structure, they are linear over $H_{S^{1}}^{\circ}(p t)=\mathbb{C}[t], \quad \operatorname{deg} t=2$.

This structure is built into the construction, and all A_{∞} structure maps respect it. It is therefore possible to take the fibre of $\mathcal{W}_{S^{1}}(X)_{\lambda}$ at $t=0$. The result is a subcategory

$$
\left.\mathcal{W}_{S^{1}}(X)_{\lambda}\right|_{t=0} \subset \mathcal{W}(X)
$$

of the ordinary wrapped Fukaya category of X, it is the full subcategory of objects L with $s_{L}=\lambda 1_{L}$.

Deformation class

Now suppose we have the set-up of Conjecture A. So we have a rank one conic fibration $\pi: X \rightarrow Y$ degenerating over a divisor $D \subset Y$. The conjecture is that:

$$
\mathcal{W}_{S^{1}}(X)_{1} \cong \mathcal{W}(Y \backslash D)
$$

Since the category on the left is linear over $\mathbb{C}[t]$, the category on the right should be too.
There is an obvious guess for what this extra structure on $\mathcal{W}(Y \backslash D)$ is. Indeed, there is a class $\tau \in S H^{2}(Y \backslash D)$ corresponding to a simple Reeb orbit going around the divisor D once. It is sometimes called the Borman-Sheridan class. With this choice of τ, the category $\mathcal{W}(Y \backslash D)$ becomes linear over $\mathbb{C}[t]$.

Conjecture D. In the situation of Conjecture A, the action of t on $\mathcal{W}_{S^{1}}(X)_{1}$ coincides with the action of τ on $\mathcal{W}(Y \backslash D)$.

On the base space Y we can consider the relative wrapped Fukaya category: $\mathcal{W}(Y, D)$. This category is, by construction, linear over a power series ring $\mathbb{C}[[h]]$ where $\operatorname{deg} h=0$. The fibre at $h=0$ is a full subcategory of $\mathcal{W}(Y \backslash D)$, containing the Lagrangians that don't have ends at D.
Now consider the space X. The S^{1} action makes $\mathcal{W}(X)$ linear over the ring $\mathbb{C}\left[s^{ \pm 1}\right]$.

Conjecture E. Suppose we have the setup of Conjecture A. Then the relative wrapped Fukaya category $\mathcal{W}(Y, D)$ is equivalent to the completion of $\mathcal{W}(X)$ at $s=1$.

Suppose X with S^{1} action is mirror to (\breve{X}, \breve{W}) with $\sigma: \breve{X} \rightarrow \mathbb{C}^{*}$. Then $\mathcal{W}(Y, D)$ will be equivalent to the category of matrix factorizations on the formal scheme obtained by completing \breve{X} along the divisor $\breve{Z}_{1}=\sigma^{-1}(1)$.

A summary

$\pi: X \rightarrow Y$ conic fibration with singular fibers over D equipped with an S^{1} action.
(\breve{X}, \breve{W}), mirror to X and $\sigma: \breve{X} \rightarrow \mathbb{C}^{*}$ mirror to S^{1} action.

$$
\begin{aligned}
& \operatorname{MF}(\check{X}, \check{W}) \text {----- } \underset{\sim}{-1}--->\mathcal{W}(X) \xrightarrow{\pi_{*}} \mathcal{W}(Y, D) \\
& i_{*} \uparrow \mid \downarrow^{*} \quad t=0 \uparrow \quad \downarrow h=0 \\
& \left.\operatorname{MF}\left(\sigma^{-1}(1)\right),\left.\breve{W}\right|_{\sigma^{-1}(1)}\right) \xrightarrow{\simeq} \mathcal{W}_{S^{1}}(X)_{1} \underset{\pi^{-1}}{\simeq} \mathcal{W}(Y \backslash D)
\end{aligned}
$$

The End
(...or a beginning?)

