Planar open books with four binding components

YANKI LEKILI

We study an explicit construction of planar open books withrfbinding com-
ponents on any three-manifold which is given by integrageny on three com-
ponent pure braid closures. This construction is genardead any planar open
book with four binding components is given this way. Usings tbonstruction
and results on exceptional surgeries on hyperbolic linksskow that any contact
structure ofS® supports a planar open book with four binding componentsrde
mining the minimal number of binding components needed famgr open books
supporting these contact structures. In addition, we stuclgss of monodromies
of a planar open book with four binding components in det&®. characterize all
the symplectically fillable contact structures in this sland we determine when
the Ozswath-Szab contact invariant vanishes. As an application, we givexan e
ample of a right-veering diffeomorphism on the four-holgthere which is not
destabilizable and yet supports an overtwisted contaattstre. This provides a
counterexample to a conjecture of Honda, Kazez, &/fatim [16].

1 Introduction

Let Y be a closed oriented 3—manifold afde a contact structure on. Recall that
an open book is a fibratiort: Y —B — St whereB is an oriented link inY such that
the fibres offtare Seifert surfaces f@. The contact structur&is said to be supported
by an open booktif € is the kernel of a one-formx such thato evaluates positively
on the positively oriented tangent vectorsBbindda restricts to a positive area form
on each fibre oft. The fibres ofrt are calledpages of the open book. We will consider
abstract open books, ¢) whereSis a page of the open book, apd Aut(S,09). Itis
easy to construct an open book as above, starting from the{8aga (see p]).

Itis well known that every contact structugas supported by an open book &rand all
open book decompositions ¥fsupportingg, are equivalent up to positive stabilizations
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and destabilizationslp)]. In light of this theorem, to study contact structures, we will
study abstract open bookS, @) supporting them. We should note that in our case the
right notion of equivalence provided by the Giroux’s theorem is congachorphism
(not contact isotopy, seé]).

In [6], Etnyre proved that every overtwisted contact structure is suppbytedplanar
open book. On the other hand, there are known obstructions for a tigiatatatructure
to admit a supporting planar open boo#],[[22], [25].

For a contact structuréY, &), in [7], Etnyre and Ozbagci defined invariants&by
a measure of topological complexity of its supporting open books. We riwele
here:

sn(&) = min{—x (1t 1(8))|m: Y —B — S' supports }

sg(&) = min{g(1t 1(8))|m: Y —B — S' supports}
bn(€) = min{|B||m: Y —B — S' supports and g(rt 1(8)) =sg(§)} ,
where8 is any pointinS' , g(.) is the genus, and| is the number of components.

These are callegupport norm, support genus andbinding number in the order given
above. In general, itis hard to compute these invariants for a givémom the above
definition, it is easy to see that (&) < 2sg§) +bn(§) — 2, however it is known that
in general these invariants are independent of each o#iefJ]).

In this article, we will determine all of these invariants for all the contact aires

on S*. Previously for any contact structufeon S*, Etnyre and Ozbagci showed that
s9(&) =0, bn(¢) <6 andsn(§) < 4. Recall that, there exists a unique tight contact
structure onS® having ds = —%. It is easy to show that this is supported by the open
book (D?,id), hencesg = 0, bn=1 andsn= —1 for the tight contact structure on
S*. The overtwisted contact structures $hare classified by theiils invariants which
takes values ir¥Z + % We will write &, for the overtwisted contact structure &8
with d3 = n. Our first result determines the invariants of these:

Theorem 1.1 Let&, be the overtwisted contact structure®nwith ds(&,) = n, then
s9(¢n) =0 for all n,
bn(E%) =2

bn(€_3) = bn(g) = 3
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bn(&,) =4 for all n# —
sn(E;) =0
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sn(E_y) =sn(&3) =1
113

(&) = 2forall n# 3,5, 5

Note that the results fan= —1, 1, 3 were calculated by7] via an easy classification
of planar open books with three or less boundary components, whicbweswhere.
Let (Y,&) be the contact three-manifold supported(iSyg). Below, we write(Y, &)

to denote the unique tight contact structureYowheneverY has a unique tight contact
structure. These descriptions and more can be found.in [

e If S=D?,thenp=id and(Y,&) = (S*,&4).

e For S=S'x [0,1], let a denote the simple closed curve generatihds). If
o=T1h,then(Y,&) = (L(p,p—1),&«) for p>0, (Y,&) = (St x £, &) for p=0,
and(Y,&) = (L(—p,1),§) for p < 0, whereg is overtwisted withe(¢) = 0 and
ds3(§) = %. Note thatS® appears exactly fop = +1. Forp=1, this is a
stabilization of the standard open book of tight contact structu® jrand for
p = —1, we get the overtwisted contact structﬁr%e

e When S has three boundary components, detb, ¢ denote boundary parallel
simple closed curves. = rgrgrg, thenY is the Seifert fibered space with
&= |—3%]+[—%]+ [~} as shown in Figurd. We only note that it is easy
to draw a contact surgery diagram of these contact structdfed he authors
calculate exactly whe® has such an open book, it turns out all of these open

books support eithe&_% or Eg .

To determinebn(§,,) for the remaining cases, we simply construct planar open books
with four binding components supportigg for the remaining cases. This determines
bn(§n). To calculatesn(§,), we show that none of these contact structures can be
supported by an open book with page a torus with one boundary conponen

[4
p q .

o0 ) <6

Figure 1: Open books with page a three-holed sphere

In [15], Honda, Kazez and Matiproves that a contact structuges tight if and only if
all of the open book decompositiofS, ¢) supportingg, have right-veering monodromy
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@€ Aut(S,0S5). This result is useful in proving thdt is overtwisted by exhibiting a
supporting open book with a monodromy which is not a right-veering diffephism.
On the other hand, whe8 is a punctured torus, the same authorslif] glso prove
that the supported contact structure is tight if and only if gheen monodromy is
right-veering. In general, however a right-veering diffeomorphisrasdaot always
correspond to a tight contact structure. In fact, any open book catebdized to a
right-veering one. However, Honda, Kazez and Kaiptimistically conjecture that
if the monodromy is given by a right veering diffeomorphism that does duotitaa
destabilization (in the sense of Giroux stabilization) then the supported tetrtazture
is tight. Our next result gives a counterexample to this conjecture:

Theorem 1.2 There exists an open bodlS, @) on the Poinca& homology sphere
¥(2,3,5) whereS is a four-holed sphere angi= 131211415 2 which is right-veering

and not destabilizable such that the supported contact structure is rawieted! con-

tact structure.

Figure 2: Generators of the mapping class group of fouréhspere

Of independent interest, we also prove the following characterizatiorecnimg pos-
itive factorizations of a family of elements in the mapping class group of foleeh
sphere. We denote by (@) the Ozswath-Szab contact invariant of the contact struc-
ture supported byS, @), whereS s the four-holed sphere.

Theorem 1.3 Letp= TgTETXTSTgT? , then@ admits a positive factorization if and only
if min{a,B,y,8} > max{—¢,—n,0}. Furthermore, this latter condition is satisfied if
and only ifc* (@) # O.
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Note that the results ofp] and [20] together with the above proposition imply that
the contact structure supported b TeTeTit3tET})) admits a Stein filling (or equiva-
lently a weak-symplectic filling) if and only if mifo, B,y,0} > max{—¢,—n,0}. An
interesting question left open is whether all non-fillable contact strucinrée class
of monodromies considered above are overtwisted. Note that one dyrsbasv that
some monodromies give overtwisted contact structures by showing thaartbeyot
right-veering, however Theorein2 shows that right-veering restriction by itself is not
enough to answer this question.

We pause here to declare our conventions for the rest of the papedeidte byt,

a right handed Dehn twist about the curae We will adhere to braid notation for
compositions:taT, means applying a right handed Dehn twist abadirst and then

a right handed Dehn twist abobt We will also use the following conventions for
braid groups: Our braids will be drawn from top to bottom with the strandsbaued
1,2,...,n from left to right. The convention for positive and negative half twist is as

shown below.
i i+ 1 i i+ 1

Figure 3: Braid group generators

2 Atopological study of planar open books

2.1 Planar open books and Dehn surgery

We first recall a classical proposition relating the mapping class groupnelieled
disk with Dehn surgery on pure braids (see for examp8 for more than presented
here). Letp be a diffeomorphism of the-holed disk, the identity on the boundary.
This diffeomorphism can be extended to a diffeomorphigrof the disk simply by
extendingy by the identity. Since any diffeomorphism of the disk which is the identity
on the boundary is isotopic to identity, there exists an isotapsuch thatp = id and

@ =@ . Letxy,...,x, be points in the disks that fill the holes, then we obtain a pure
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braid B(¢) by considering the union of ardsp(x),t) in D2 x [0,1], t € [0,1] (see
Figure4 for an example). This pure braid almost captures the wipolexceptg can
have extra boundary twists around the holes. We summarize this in the pi@pos
below. LetD, denote then holed disk, and MafDy,0D,,) be the mapping class group
of diffeomorphisms which are identical on the boundary. Pgtbe the pure braid
group onn strands.

Proposition 2.1 Map(Dy,0Dp) = P, x Z" |

L
=DN

Figure 4: Pure braid associated with a mapping class

Note thatn-holed disk is topologically the same as+ 1-holed sphere, however the
above isomorphism is meaningful only after choosing a boundary componhé¢he

n+ 1-holed sphere to be identified with the boundaryDsf after filling in the other
boundary components with disks. Nevertheless, such a choice can leeomazland
for all. By looking at Figure2, we choose the boundary component parallel to the
curved to correspond to the boundary B?, and the pure braid will be obtained by
filling in the boundary components parallel to the cureed andc, in addition we
choose the ordering of the strands of the pure braid in this order. Thissgdtad

in Figure4. On the left, we see an illustration of the right handed Dehn twist about
a curve encircling the first two holes, and on the right we see the comdsm pure
braid.

This proposition gives us an alternative way to describe the underlyirgomipal
manifold supported by an open boORy, ). Namely if Y has an open bookDy, @),
thenY is obtained by Dehn surgery on the braid closﬁ(ep) of the braidf3(¢g) with
surgery coefficients determined by the above isomorphism.

In this article, we study planar open books with four binding components.theo
sake of explicitness, we give a more precise statement of the abovesilisties this
case.

Let S= D3 denote a four-holed sphere, the mapping class gidap(S, 0S) is not
a free abelian group in contrast to the case three-holed sphere , irufzartichas
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a subgroup isomorphic tb,, the free group on two generators, generated by Dehn
twists arounde andf in Figure2. In fact, it is a classical fact thatlap(S,0S) can
be seen as a direct produgf x F, (see P]). We can see this as follows: Because
of Proposition2.], it suffices to see thaP; is Z x F,. Recall thatP3 is isomorphic
to the fundamental group of the space of triples of distinct points on the {laoi.
Consider the forgetful map, frofs — P2, given by forgetting about the middle strand.
P, is Z and the kernel of this map g (C — {—1,1},0), which isF,. Thus we have
a short exact sequence:

O—-F,—P3—>7Z—0

where the kernel is generated b§ and og, and the image is generated by the central
element(020102)2 which corresponds to a full right-handed twist of the three-strands.
Therefore, any pure 3-braid is expressed uniqueljoas;0,)202a3" ... 02*a5'k,
whered, €, n; are integers.

Therefore, under the identification of Propositththany mapping clasge € Map(S, 0S)
can be represented hy:

o= totbrrdrat . i
and such a representation is unique.

Here, @ is identified with the pure brai(g) = (020102)20%a5" ... 0>*a5", and

the integerga,3,y). For such open books, we have the following proposition as part
of the general discussion above:

Proposition 2.2 Let S be the four-holed sphere anmgi= t3tPt{tdtet . Tl
Lete = zikzl g andn = 2}‘:1m. Then the topological manifold given by the open
book (S, @) can be obtained by Dehn surgery on the braid closure of the pureé®-bra
B = (020102)P0%a5" ... 0205, with surgery coefficient§a + 3+ ¢, B+ 8+ &+
n,y+9o+n). O

2.2 Planar open books on the three-sphere

We would like to construct planar open books with four boundary commsnen
S*. We will look for planar open books with simple monodoromy of the fopma:

wtbrirdtr). In light of Proposition2.2, we would like to know when a surgery

on a braid closure of a pure 3-braid of the fofin= (020102)250%803” yields S°.
Fortunately, this question is completely resolved by Armas-Sanabria anav&ud
Mufioz in [8] by depending on deep results on Dehn surgery on knots. In particular
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the authors list several infinite families. Therefore, we can descrilxéspig when an
open book(S et Tit3tEr!) is an open book oS,

From the list provided ing] we pick a convenient family. By using Kirby calculus, we
will verify independently that these indeed gig&, and our next task is to calculate the
ds invariants of the contact structures supported by the correspondamgomoks. The
difficulty is that we would like to see that any valueZnt+ % can be achieved. We will
apply several tricks to ensure this. Therefore, as a consequettvesef calculations,
we show that every contact structure $his supported by an open book with a planar
page with at most four binding components.

Proof of Theorem1.1:  We will start with the braid@ = (020102)%0; *0,*. Figure5

is a picture of the closure of this braid, also known as the chain link. Therbgle
structure on its complement was first constructed by Thurston in his riedgsapd
this manifold has been called as the “magic manifold” by Gordon and ¥8l[[L4]
as Dehn fillings of this complement recover many of the known hyperbolic widsif
and account for most of the interesting non-hyperbolic fillings of cuspgxrbolic
manifolds (seel8] for a classification oéill exceptional surgeries on this link). Itis the
3-cusped hyperbolic manifold with smallest known volume and compleity [

It is easy to see by blowing down twice thiat1, —2, —4) surgery on this link yields
S® (see below for the more general case).

4

Figure 5: Surgery on the chain link

Therefore, by our Propositio2.2, it follows that the open book with pagg a four-

holed sphere, ang = rgrgr\c’rdrgzrf‘z is an open book 0i%® when

((X - 1,[3* 37y* 1) = (717 *27 *4)

More generally, consider the brajgl= (020102)2012%54 and perform Dehn surgery
with coefficients(1—p, —p, —4). In Figure6, we verify that we still obtairs®.
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blow-down blow-down

- -

blow-down

53

blow-down

blow-down

—_—

Figure 6: Surgery on a family of links yields®

By reflecting (which amounts to changing orientation), we also know thanh Befgery
on B = (020107) 205°a% with coefficients(p— 1,p,4) also yieldsS®.

After some experimentation, the author found that the following two families efiop
books (which are obtained from one another by reflecting the braidas ptwill be
sufficient for our purposes. (Note that reflecting the braid amountsdagihg the
orientation, but sinces® has an orientation reversing diffeomorphism, this will still
give an open book 08°. Though, as we will see below the supported contact structure
will change!)

It will suffice to consider the following two possibilities:

—3. ——po—2
@ = Tl Tdle Py

13 -1.p2
G = T, ToTy T8Tf

We will denote the supported contact structuregpyndé,. Note that in both open
books the monodromies have boundary parallel negative Dehn twistsadys@ see
that in this case, the monodromies are not right-veering. Therefore ufipoded

contact structures are overtwisted.

To determine the contact structures, following the descriptiorZjr(dee also 3)),
we will next compute theal; invariants of the supported contact structures from the
monodoromy data of the open books. First, we briefly review the strategymdre
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details sed7]. Given @ as a product of Dehn twists about homologically non-trivial
curvesay,...,a onaplanar surfac8with n boundary components, one first constructs
the Stein manifoldSx D? in a standard way by attachingone-handles t®*, then
one attaches 2-handles along Legendrian realizatiorss oh S with +1 framing
depending on whether the Dehn twist abauis left or right-handed. LeW be the
4-manifold thus constructed. Then the contact manifMct) supported by the open
book (S @) is the boundary ofNV. As long asci(§) = 0 (or more generally a torsion
class) inH?(Y), d3(&) is an element of) and may be computed by the formula,

(&) = 3 (C(W) — 2X(W) ~ 30(W)) +
whereq is the number of negative Dehn twists in the factorizatiopofurthermore,
c2(W) is the square of the clasgW) € H?(W) which is Poincag dual to the class
Z}‘erot(ai)Ci € Ha(W,Y), whereC; is the cocore of the 2-handle attached al@pg
and rota) is the rotation number of; which can be computed as the winding number
of g with respect to a standard trivialization of the tangent bundle of the pagee S
we assumee; (£) = 0, ¢(W) maps to zero under the natural meg(W) — H2(Y),
hence it comes from class iH?(W,Y) whose square ig*(W) that appear in the
formula above.

Now, Figure7 is a Kirby diagram for the page of a planar open book with four
boundary components. We drew all the curab,c.d,e and f that appear in the
above monodromies.

Figure 7: The diagram of the page

In order to compute the rotation numbers, we chose an orientation of thesciimete
that the computation af?(W) is independent of this choice). One then computes the
winding numbers of these curves to get:

rot(a) = rot(b) =rot(e) =1

rot(c) = rot(f) =rot(d) =0
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The rest of the proof is a direct homology calculation based on the dgsnosp
above.

Computation of dz(§,) and dg(E_p)

Let X, Y, and Z be the 1-handles, which form a basis 6f(W;Z). Let B,
{C1,C2,C3}, D, {El,Ez,...E‘p‘}, {F1,F2} be the cores of the handles attached cor-
responding to the factorizatiop, = 115 314Te 1, 2. These form a basis a,(W;Z)
and the boundary map can be read off the diagram in Figtwebe :
dB) = Y-Xd(C)=X
dD) = ZdD-E)=X d(F)=Y
Thus, H1(W) = 0 andHy(W) = ZPI+4, It will be convenient to pick the following
basis of generators:
{Cl—D—i—E‘p‘,Cl—D—l—E‘p‘,l,...,Cl—D—i—El,B—l-Cl—F]_,B—I-CQ—F]_,
B+C3—Fy,Fo—Fa}

Note that we haveB? =D? = -1 andC? =C3=C5=F?=F2 =1 andE? =

sgnp) and any cross term intersection number is zero. The intersection matrix takes
particularly nice form if we add or subtract the firgtelements in the above basis to
the (p+1)" element according to whethpris negative or positive. So, our new basis

is given by
{leDJrE‘p‘,C]_*D+E‘p‘,1,...,C1*D+E1,
B+ (1—p)C1+pD —F1—sgnp)Ey — ... —sgn(p)Ey,
B+ C2—F1,B4+Cs—F1,Fo—F1}

Therefore, the intersection matrix @ in the this basis can be calculated to be:

sgnp) O N ¢
o . 0 0

0 sgrip) O 0

Qw = : : 0 1-p 0 0 1
: : 0 1 0 1

: : : 0 O 1 1

0O 0 0 1 1 1 2

From this one can easily compute tlgtW) = 2+ p, and also we know thagt(W) =
Ip|+5. To computec?(W), let us denote the cocores W, {C;,C,,Cs}, D,
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{E1,...Ep}, {F1,F2}. Then from the calculation of rotation numbers it follows that
c(W) is Poincaé dual to
BrEit.. +E

Evaluatingc(W) on our basis ofH,(W), we get the vector1,...,1,1—p,1,1,0)
hence the Poincardual to the pull back of(W) to H2(W,Y) is given by(1,...,1,1—
p,1,1,0)'- (Qw) 1, which one can calculate to be:

sgnp) O 0 1
0 0 0 :
0 sgrp) O 0 1
: 0 0o -1 -1 1 1-p
-1 p —14+p 1-p 1
: : : -1 —-1+p p 1-p
0 0 0 1 1-p 1-p —-1+p 0

cz(W) = (sgnp),...,sgnp),—2,—2+3p,—2+3p,3—-3p)-(1,...,1,1—p,1,1,0)
= 9p-6

The number of negative Dehn twists is given QgwW) = 5+ ‘p# Finally, we
compute:

pl+p_, 1
>~ 5

ds(Ep) = 5(9p—6—2(|p| +5) ~3(2+p)) + 5+

This only covers half of the overtwisted contact structure$Srto get the other half,
we considerg,. Note, thaté, is obtained by orientation reversal. Therefore, we do
not need to compute all the above invariants from scratch. Namely, we have

A(-W) = —cA(W)=-9p+6
X(=W) X(W) = |p|+5
o(-W) = —o(W)=-p-2
q-W) = 2+ !p|2—p

Therefore, we have:

1 — 5
s(Ep) = 3(~9p+6-2(|p| +5) ~3(-p-2) +2+ PP o zpy >
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We determined the binding number of all the overtwisted contact structures. T
proof of Theoreml.1 will be completed once we determine the support norm of
the overtwisted contact structures. Note that because all of the ovedwistdact
structures are supported by a planar open book with page a fourduede, we have
that sn(€) < 2 for all &. We also know that ifds(€) # —3,3,3, thenbn(§) = 4,
therefore the only way for these contact structures to have suppwort stoctly less
than 2 is when they are supported by an open book with page a torus witloondary
component. Now, recall the well-known fact that the only genus onefikmets onS®

are trefoil and figure-eight knot and the corresponding open bbaks monodromy
Taﬂrbﬂ, wherea and b are standard generators of the homology of the torus, (this
follows from for example 17]). It is now easy to see that,ty, Tatgl, ;11 are
obtained by positively stabilizing the open books with annulus page supgdhtn
unique tight contact structure, and the overtwisted contact strué'%urandTngg lis

obtained by negatively stabilizinﬁ;%, hence corresponds ﬁ)ﬁz This completes the

proof of Theoreml.1 O
n<—3|n=-3|n=3%|n=%|n>3 &
bn 4 3 2 3 4 1
sn 2 1 0 1 2 -1
sg 0 0 0 0 0 0

3 Positive factorizations

In this section we give a proof of Theorein3 in the following two propositions.
Recall that for the four-holed sphe®& Map(S,0S) = Z* x F,. The first homology is
Ha(Map(S,0S)) = Z8 where the class of a general element TSTh T/ TS T . o™
is given by(a,B,Y,8, TK_; &, YK 1 nk). We will prove the following proposition:

Proposition 3.1 Let ¢= TgTETXTSTgTP, then@ admits a positive factorization if and
only if min{a,B,y,0} > max{—¢,—n,0}

Proof Supposep=Tc,...T¢, is a positive factorization iMap(S,dS). We consider
the quotient relation iH1(Map(S,0S)) = Z°.

(a787y76787 r]) = [Tcl] + tte + [TCk}
Now, by topological classification of surfaces observe that any simplealosrveC;
is conjugate inMap(S,dS) to one of the curves,b,c,d,e,f or g in Figure2. The
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classes of Dehn twists around these curveslifiMap(S 0S)) are given by[ta] =
(1,0,0,0,0,0), [tp] = (0,1,0,0,0,0),[tc] = (0,0,1,0,0,0), [t4] = (0,0,0,1,0,0),Te =
(0,0,0,0,1,0),[ts] = (0,0,0,0,0,1) and [tg] = (1,1,1,1,—1,—1). For the latter, ob-
serve that by the lantern relation we haye-= rarbrcrdrglrfl. Letus denote bg € Z°
the vector withi!" coordinate 1 and other coordinates 0 anailet(1,1,1,1, -1, —1).
Therefore, each classc,| is equal to either some or n. Now, if @ has positive
factorization then

6
(a,B,Y,0,€,n) = pon+ Zpia
i=

for somep; > 0. Thus if€ or n is negative,pp > max{—¢, —n}, which shows that
min{a,B,y,8} > max{—¢,—n,0} as desired.

Conversely, i, n > 0, then the given factorization is positive as long as{uif, y, 5} >
0. Without loss of generality, suppose next teat 0 andn =¢+r forr > 0. We
have mifa,B,y,0} > —¢, set—e = k> 0. Then by using the lantern relati&rtimes,
we obtain the central elemefit; Tetg)¥. We first use this to kill the negative powers of
f, to get:

Bk oy—k Sk —k-—k k
¢ = T3 TE Ty Te Tf (TiTeTg) Tt

_ ro—k Bk y—k 3k —k —k k Kot
= Ta T W TG Te Tp T (Telg) Tt

a—k.B-k 50—k

= '[a '[b Tgik'[df Tg k—1_r

kHTg(TeTg) T

The proof will be completed once we show thet*+114(Tetg)<* has a positive
factorization. We do this by induction and using the well-known fact that iE— S
a diffeomorphism an€ a simple closed curve then the equalifyc, = f~Ltcf holds.
Fork = 1, the expression is equal tg so it is positive. We write

k k—1 —k+1 (—k+1)

Te g (TeTg) = Te
—k4-2 k-2
Ticigle  To(TeTg)

TgTe To ¥ 214 (TeTq) < 2

The latter expression is positive by induction hypothesis, which completesdloé
In fact, we can simply see that

_ ro—kB—K_y—k 5k r
O=T4 Ty T “Tq Tek 11 Tk 2(g) - Trel) ToTh

O

Remark 3.2 Suppose more generally thgt= totbtltdtatt . 8, Let e =

yK & andn = TK ; nk. Then the same argument usig(Map(S,dS)) gives thatgp
has a positive factorization only if mjia, B,y,8} > max{—¢,—n,0}. However, it is
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easy to see that this is not sufficient. For exampé&,rg%{ 1 satisfies this condition,
but one can check that this is not a right-veering monodoromy hencetda@mritten
as a product of right-handed Dehn twists (l][the supported contact structure can
not even be tight). On the other hand, the argument given in the abowtgearly
gives a positive factorization aj if min{a,3,y,0} > Z}‘Zl max{e;,n;,0}.

We next determine whether or not the OagvSzab contact invariant vanishes for
these contact structures. In our case, it turns out that this is equivalamether or
not the contact structure is Stein fillable.

Proposition 3.3 Let p= rgrETXrgrgTP, then the contact invariarnt" (@) is non-zero

ifand only if min{a, B,y,0} > max{—¢,—n,0}

Proof Let us definap,, @, ¢, @ to be the induced monodromies on the three-holed
planar surface after one “caps off” the boundary components pacaieb , c or d by
gluing a disk to the corresponding boundary component and extendintptih@dromy

by identity on this disk. LeE,, &y, & and&y be the corresponding contact structures
obtained this way.

In [2] Corollary 1.3, Baldwin proves that if the contact invariant of any of tbetact
structuresty, &p, & and&y is zero, then it must be the case tledt() = 0. Without
loss of generality, suppose that= —k < 0, anda < k. Then let's consider the open
book @, where the boundary component parallel to the cusvis capped off. In
that casege becomes isotopic ta, and no other curves become isotopic to these pair.
Therefore, the monodromy, hask — a left-handed Dehn twists around the boundary
component corresponding & which shows that the supported contact struc@ye

is overtwisted 15]. Therefore, the contact invariat (§p) = 0 by [21]. Hence, it
follows thatct(g) = 0.

Conversely, if mida, B,y,0} > max{—¢&,—n,0}, then by the previous proposition, the
supported contact structure is Stein fillable, heatép) # 0 by [21]. O

Remark 3.4 As in the previous remark, for the more general class of diffeomor-
phisms,@=tetbt¥tdtt .. 1%, the above argument shows titat(@) = 0 when
min{a,B,y,0} < max{—¢,—n,0}. However, the converse is not true again by the same
example given there, name’qgnrglrf‘l has vanishingc* (g) = 0, since it supports

an overtwisted contact structure2{]). We would like to point out that this is an

overtwisted contact structure dary.
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4 Anexample

4.1 Poinca€ homology sphere

Once we have the surgery description on pure 3-braid closures, #yiseplay around
with simple 3-braids and surgeries on them to get interesting open bookgesiions
on various manifolds.

Proof of Theorem1.2: The simplest non-trivial pure 3-braid is arguaBly- (020102)2054

whose braid closure is shown in Figu8e

Figure 8: The braid closure @ = (020102)20I4

We first verify below that if we do surgery on the closure of this braid witigery coeffi-
cients(k, 1,2), then the resulti&— 5 surgery on the left-handed trefoil. By Proposition
2.2, we obtain an open book with page a four-holed spheregadk*1121.14152. I
particular, the(4,1,2) surgery yields the infamous Poinéanomology sphere which
has a unique tight contact structure.

H owdown S blow-down S
—_— —
— } _5
</:> bt o B
+2

Figure 9: Surgery on the left-handed trefoil

It is easy to see that the monodronpy= 1112114152 is right-veering. In fact,
the monodromy is given by a multi-curve, and it is easy to see that all the bound
components are protected. To be more careful, since the right-veefiegrddrphisms

is a submonoid ofut(S,89), it suffices to show that,1;? is right-veering with respect
to the boundary component encircled &y To see this, we can apply the Lemma 3.3
of [15]. We first put a hyperbolic structure dhso that the boundary components are
geodesics. Next, we need to find a subsurfdcef S with geodesic boundary so that
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the boundary component & encircled bya is a common boundary component$f
and S and thatt;? is identity onS. This is easily accomplished by takir®) to be

the pair-of-pants that has boundary at the boundary componentsleddiy a and b

and also a geodesic curve which encircles ketind b (parallel toe). Note that by
isotoping e if necessary, we can arrange ti&itis disjoint from e and has geodesic
boundary. Thus Lemma 3.3 off] applied as above to each boundary component of
S shows thatp = 8112114152 is right-veering fork > 0.

We next prove thafS @) is also not destabilizable. If it were, then it would be
a stabilization of an open bookP,¢), with pageP a three-holed sphere, where
@ = Tgrgrg for the curvesa, b andc are as in Figurd. As we noted before, such a
(P, ) is an open book on a Seifert fibred space veh- L—%j + L—%J +[—1]. Now,
since g for the Poincaé homology sphere is-2, it follows that at least one of the
exponentg,q or r is negative (for exampla,gzrgrg is an open book on the Poinéar
homology sphere). Any stabilization which gives a page with four holedrgainust be
obtained by attaching a 1-handi¢o a fixed boundary componentBfand introducing

a new monodromy curve which intersects the cocore bfat a unique point, so that
=19 , whereq is extended by identity alonig to a diffeomorphism ofs. We now
argue that the monodromy of every such open book is not right-veehmged, by
noting that the curves is constraint to intersect the cocore lof(which is a properly
embedded arc that connects the top two boundary compone&tsmfigure10), it

is easy to see that one could always find a diffeomorphis@® (@t necessarily fixing
boundary components but sending boundary components to boundappoents),
such that the configuration of monodoromy curvegdq@ is as in FigurelO, where
the sets of curveg, y and z depicted are a permutation of the images of the sets of
curves corresponding to Dehn twists around and ¢ after stabilization. Indeeds

is composed of two pairs-of-pants, separated by a curve parakettioves in Figure
10, and noting the fact that intersects cocore df at a unique point, we can arrange
by isotopy so that either it does not intersect the common boundary of thastwof-
pants or it intersects at precisely two points, and now apply a diffeomanpbiighe
pair-of-pants at the bottom, which fixes the boundary component pai@heturves,
but rotates the other boundary components if necessary. Finally, sm&aaw that
at least one of the sets of curveor y or z are all negative Dehn twists, by looking
at FigurelQ, it is now easy to see that the monodromyy is not right-veering. This
proves thatp cannot be destabilized.

On the other hand, it follows from the obstruction result/@f that the unique tight
contact structure on the Poinédromology sphere cannot support a planar open book.
(Alternatively, it is known that the unique tight contact structure on the d2aén
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Figure 10: Stabilized open books

homology sphere is Stein fillable, hence, by the results of W&l if a planar open
book supports this contact structure, it should have a positive fadiorizlaut this
contradicts our Theorerh.3. )

Therefore, the contact structure supported by the open BBORT2T 14T 2) is an
overtwisted one, which completes the proof of our Theote?n d

Remark 4.1 Note that the way we argued for the overtwistednesgodt Tyt ? is
quite special to the case of Poinedromology sphere. In particular, we used the fact
that the unique tight contact structure on this manifold is not supportedlayparopen
book. A similar argument can be made foe= 0,1,2,3 to obtain right-veering, not
destabilizable monodromies which support overtwisted contact strucuses (the
classification result in][1], which in particular says that all the tight contact structures
on these manifolds are Stein fillable). However, we do not know{if 12114152 is
overtwisted or tight forlk > 4. These are Seifert fibered manifol—2; 3,3, . X;),
they haveey(M) = —2 but they are not L-spaces. The classification of tight contact
structures on these Seifert manifolds seems not yet to have been completedhat
the corresponding monodromies are all right-veering diffeomorphismthantbntact
invariants of the corresponding contact structures are zero.
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