
Planar open books with four binding components

YANKI LEKILI

We study an explicit construction of planar open books with four binding com-
ponents on any three-manifold which is given by integral surgery on three com-
ponent pure braid closures. This construction is general, indeed any planar open
book with four binding components is given this way. Using this construction
and results on exceptional surgeries on hyperbolic links, we show that any contact
structure ofS3 supports a planar open book with four binding components, deter-
mining the minimal number of binding components needed for planar open books
supporting these contact structures. In addition, we studya class of monodromies
of a planar open book with four binding components in detail.We characterize all
the symplectically fillable contact structures in this class and we determine when
the Ozsv́ath-Szab́o contact invariant vanishes. As an application, we give an ex-
ample of a right-veering diffeomorphism on the four-holed sphere which is not
destabilizable and yet supports an overtwisted contact structure. This provides a
counterexample to a conjecture of Honda, Kazez, Matić from [16].

1 Introduction

Let Y be a closed oriented 3–manifold andξ be a contact structure onY . Recall that
an open book is a fibrationπ : Y −B → S1 whereB is an oriented link inY such that
the fibres ofπ are Seifert surfaces forB. The contact structureξ is said to be supported
by an open bookπ if ξ is the kernel of a one-formα such thatα evaluates positively
on the positively oriented tangent vectors ofB anddα restricts to a positive area form
on each fibre ofπ. The fibres ofπ are calledpages of the open book. We will consider
abstract open books(S,φ) whereS is a page of the open book, andφ ∈ Aut(S,∂S). It is
easy to construct an open book as above, starting from the data(S,φ) (see [5]).

It is well known that every contact structureξ is supported by an open book onY and all
open book decompositions ofY supportingξ are equivalent up to positive stabilizations
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and destabilizations [12]. In light of this theorem, to study contact structures, we will
study abstract open books(S,φ) supporting them. We should note that in our case the
right notion of equivalence provided by the Giroux’s theorem is contactisomorphism
(not contact isotopy, see [5]).

In [6], Etnyre proved that every overtwisted contact structure is supportedby a planar
open book. On the other hand, there are known obstructions for a tight contact structure
to admit a supporting planar open book, [6], [22], [25].

For a contact structure(Y,ξ), in [7], Etnyre and Ozbagci defined invariants ofξ by
a measure of topological complexity of its supporting open books. We recallthese
here:

sn(ξ) = min{−χ(π−1(θ))|π : Y −B → S1 supportsξ}

sg(ξ) = min{g(π−1(θ))|π : Y −B → S1 supportsξ}

bn(ξ) = min{|B||π : Y −B → S1 supportsξ and g(π−1(θ)) = sg(ξ)} ,

whereθ is any point inS1 , g(.) is the genus, and|.| is the number of components.

These are calledsupport norm, support genus andbinding number in the order given
above. In general, it is hard to compute these invariants for a givenξ. From the above
definition, it is easy to see that sn(ξ) ≤ 2sg(ξ)+bn(ξ)−2, however it is known that
in general these invariants are independent of each other ([4], [3]).

In this article, we will determine all of these invariants for all the contact structures
on S3. Previously for any contact structureξ on S3, Etnyre and Ozbagci showed that
sg(ξ) = 0, bn(ξ) ≤ 6 andsn(ξ) ≤ 4. Recall that, there exists a unique tight contact
structure onS3 havingd3 = −1

2 . It is easy to show that this is supported by the open
book (D2, id), hencesg = 0, bn = 1 andsn = −1 for the tight contact structure on
S3. The overtwisted contact structures onS3 are classified by theird3 invariants which
takes values inZ + 1

2 . We will write ξn for the overtwisted contact structure onS3

with d3 = n. Our first result determines the invariants of these:

Theorem 1.1 Let ξn be the overtwisted contact structure onS3 with d3(ξn) = n, then
sg(ξn) = 0 for all n,

bn(ξ 1
2
) = 2

bn(ξ− 1
2
) = bn(ξ 3

2
) = 3

bn(ξn) = 4 for all n 6= −
1
2
,
1
2
,
3
2

sn(ξ 1
2
) = 0
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sn(ξ− 1
2
) = sn(ξ 3

2
) = 1

sn(ξn) = 2 for all n 6= −
1
2
,
1
2
,
3
2

Note that the results forn = −1
2,

1
2,

3
2 were calculated by[7] via an easy classification

of planar open books with three or less boundary components, which we review here.
Let (Y,ξ) be the contact three-manifold supported by(S,φ). Below, we write(Y,ξst)

to denote the unique tight contact structure onY wheneverY has a unique tight contact
structure. These descriptions and more can be found in [7].

• If S = D2 , thenφ = id and(Y,ξ) = (S3,ξst).
• For S = S1× [0,1], let a denote the simple closed curve generatingH1(S). If

φ = τp
a , then(Y,ξ) = (L(p,p−1),ξst) for p > 0, (Y,ξ) = (S1×S2,ξst) for p = 0,

and(Y,ξ) = (L(−p,1),ξ) for p < 0, whereξ is overtwisted withe(ξ) = 0 and
d3(ξ) = 3+p

4 . Note thatS3 appears exactly forp = ±1. For p = 1, this is a
stabilization of the standard open book of tight contact structure inS3, and for
p = −1, we get the overtwisted contact structureξ 1

2
.

• When S has three boundary components, leta, b, c denote boundary parallel
simple closed curves. Ifφ = τp

aτq
bτr

c , then Y is the Seifert fibered space with
e0 = ⌊−1

p⌋+ ⌊−1
q⌋+ ⌊−1

r ⌋ as shown in Figure1. We only note that it is easy
to draw a contact surgery diagram of these contact structures [7]. The authors
calculate exactly whenS3 has such an open book, it turns out all of these open
books support eitherξ− 1

2
or ξ 3

2
.

To determinebn(ξn) for the remaining cases, we simply construct planar open books
with four binding components supportingξn for the remaining cases. This determines
bn(ξn). To calculatesn(ξn), we show that none of these contact structures can be
supported by an open book with page a torus with one boundary component.

Figure 1: Open books with page a three-holed sphere

In [15], Honda, Kazez and Matić proves that a contact structureξ is tight if and only if
all of the open book decompositions(S,φ) supportingξ have right-veering monodromy
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φ ∈ Aut(S,∂S). This result is useful in proving thatξ is overtwisted by exhibiting a
supporting open book with a monodromy which is not a right-veering diffeomorphism.
On the other hand, whenS is a punctured torus, the same authors in [16] also prove
that the supported contact structure is tight if and only if thegiven monodromy is
right-veering. In general, however a right-veering diffeomorphism does not always
correspond to a tight contact structure. In fact, any open book can bestabilized to a
right-veering one. However, Honda, Kazez and Matić optimistically conjecture that
if the monodromy is given by a right veering diffeomorphism that does not admit a
destabilization (in the sense of Giroux stabilization) then the supported contact structure
is tight. Our next result gives a counterexample to this conjecture:

Theorem 1.2 There exists an open book(S,φ) on the Poincaŕe homology sphere
Σ(2,3,5) whereS is a four-holed sphere andφ = τ5

aτ2
bτcτdτ−2

e which is right-veering
and not destabilizable such that the supported contact structure is an overtwisted con-
tact structure.

Figure 2: Generators of the mapping class group of four-holed sphere

Of independent interest, we also prove the following characterization concerning pos-
itive factorizations of a family of elements in the mapping class group of four-holed
sphere. We denote byc+(φ) the Ozsv́ath-Szab́o contact invariant of the contact struc-
ture supported by(S,φ), whereS is the four-holed sphere.

Theorem 1.3 Let φ = τα
a τβ

bτγ
cτδ

dτε
eτη

f , thenφ admits a positive factorization if and only
if min{α,β,γ,δ} ≥ max{−ε,−η,0}. Furthermore, this latter condition is satisfied if
and only if c+(φ) 6= 0.
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Note that the results of [26] and [20] together with the above proposition imply that
the contact structure supported by(S,τα

a τβ
bτγ

cτδ
dτε

eτη
f ) admits a Stein filling (or equiva-

lently a weak-symplectic filling) if and only if min{α,β,γ,δ} ≥ max{−ε,−η,0}. An
interesting question left open is whether all non-fillable contact structuresin the class
of monodromies considered above are overtwisted. Note that one can easily show that
some monodromies give overtwisted contact structures by showing that theyare not
right-veering, however Theorem1.2shows that right-veering restriction by itself is not
enough to answer this question.

We pause here to declare our conventions for the rest of the paper. Wedenote byτa

a right handed Dehn twist about the curvea. We will adhere to braid notation for
compositions:τaτb means applying a right handed Dehn twist abouta first and then
a right handed Dehn twist aboutb. We will also use the following conventions for
braid groups: Our braids will be drawn from top to bottom with the strands numbered
1,2, . . . ,n from left to right. The convention for positive and negative half twist is as
shown below.

Figure 3: Braid group generators

2 A topological study of planar open books

2.1 Planar open books and Dehn surgery

We first recall a classical proposition relating the mapping class group of an-holed
disk with Dehn surgery on pure braids (see for example [23] for more than presented
here). Letφ be a diffeomorphism of then-holed disk, the identity on the boundary.
This diffeomorphism can be extended to a diffeomorphismφ̃ of the disk simply by
extendingφ by the identity. Since any diffeomorphism of the disk which is the identity
on the boundary is isotopic to identity, there exists an isotopyφ̃t such that̃φ0 = id and
φ̃1 = φ̃ . Let x1, . . . ,xn be points in the disks that fill the holes, then we obtain a pure
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braid β(φ) by considering the union of arcs(φ̃t(xi), t) in D2× [0,1], t ∈ [0,1] (see
Figure4 for an example). This pure braid almost captures the wholeφ, exceptφ can
have extra boundary twists around the holes. We summarize this in the proposition
below. LetDn denote then holed disk, and Map(Dn,∂Dn) be the mapping class group
of diffeomorphisms which are identical on the boundary. LetPn be the pure braid
group onn strands.

Proposition 2.1 Map(Dn,∂Dn) = Pn ×Zn

Figure 4: Pure braid associated with a mapping class

Note thatn-holed disk is topologically the same asn + 1-holed sphere, however the
above isomorphism is meaningful only after choosing a boundary component of the
n + 1-holed sphere to be identified with the boundary ofD2 after filling in the other
boundary components with disks. Nevertheless, such a choice can be made once and
for all. By looking at Figure2, we choose the boundary component parallel to the
curve d to correspond to the boundary ofD2, and the pure braid will be obtained by
filling in the boundary components parallel to the curvesa, b and c, in addition we
choose the ordering of the strands of the pure braid in this order. This is illustrated
in Figure4. On the left, we see an illustration of the right handed Dehn twist about
a curve encircling the first two holes, and on the right we see the corresponding pure
braid.

This proposition gives us an alternative way to describe the underlying topological
manifold supported by an open book(Dn,φ). Namely if Y has an open book(Dn,φ),
thenY is obtained by Dehn surgery on the braid closureβ̂(φ) of the braidβ(φ) with
surgery coefficients determined by the above isomorphism.

In this article, we study planar open books with four binding components. For the
sake of explicitness, we give a more precise statement of the above discussion for this
case.

Let S = D3 denote a four-holed sphere, the mapping class groupMap(S,∂S) is not
a free abelian group in contrast to the case three-holed sphere , in particular it has
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a subgroup isomorphic toF2, the free group on two generators, generated by Dehn
twists arounde and f in Figure2. In fact, it is a classical fact thatMap(S,∂S) can
be seen as a direct productZ4×F2 (see [9]). We can see this as follows: Because
of Proposition2.1, it suffices to see thatP3 is Z×F2. Recall thatP3 is isomorphic
to the fundamental group of the space of triples of distinct points on the plane([10]).
Consider the forgetful map, fromP3 → P2, given by forgetting about the middle strand.
P2 is Z and the kernel of this map isπ1(C−{−1,1},0), which is F2. Thus we have
a short exact sequence:

0→ F2 → P3 → Z → 0

where the kernel is generated byσ2
1 andσ2

2, and the image is generated by the central
element(σ2σ1σ2)

2 which corresponds to a full right-handed twist of the three-strands.
Therefore, any pure 3-braid is expressed uniquely as(σ2σ1σ2)

2δσ2ε1
1 σ2η1

2 . . .σ2εk
1 σ2ηk

2 ,
whereδ,εi,ηi are integers.

Therefore, under the identification of Proposition2.1any mapping classφ∈Map(S,∂S)

can be represented by:
φ = τα

a τβ
bτγ

cτδ
dτε1

e τη1
f . . .τεk

e τηk
f

and such a representation is unique.

Here,φ is identified with the pure braidβ(φ) = (σ2σ1σ2)
2δσ2ε1

1 σ2η1
2 . . .σ2εk

1 σ2ηk
2 , and

the integers(α,β,γ). For such open books, we have the following proposition as part
of the general discussion above:

Proposition 2.2 Let S be the four-holed sphere andφ = τα
a τβ

bτγ
cτδ

dτε1
e τη1

f . . .τεk
e τηk

f .

Let ε = ∑k
i=1 εi andη = ∑k

i=1 ηi . Then the topological manifoldY given by the open
book (S,φ) can be obtained by Dehn surgery on the braid closure of the pure 3-braid
β = (σ2σ1σ2)

2δσ2ε1
1 σ2η1

2 . . .σ2εk
1 σ2ηk

2 , with surgery coefficients(α + δ + ε,β+ δ + ε +

η,γ+δ+η).

2.2 Planar open books on the three-sphere

We would like to construct planar open books with four boundary components on
S3. We will look for planar open books with simple monodoromy of the formφ =

τα
a τβ

bτγ
cτδ

dτε
eτη

f . In light of Proposition2.2, we would like to know when a surgery

on a braid closure of a pure 3-braid of the formβ = (σ2σ1σ2)
2δσ2ε

1 σ2η
2 yields S3.

Fortunately, this question is completely resolved by Armas-Sanabria and Eudave-
Muñoz in [8] by depending on deep results on Dehn surgery on knots. In particular,
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the authors list several infinite families. Therefore, we can describe precisely when an
open book(S,τα

a τβ
bτγ

cτδ
dτε

eτη
f ) is an open book onS3.

From the list provided in [8] we pick a convenient family. By using Kirby calculus, we
will verify independently that these indeed giveS3, and our next task is to calculate the
d3 invariants of the contact structures supported by the corresponding open books. The
difficulty is that we would like to see that any value inZ+ 1

2 can be achieved. We will
apply several tricks to ensure this. Therefore, as a consequence ofthese calculations,
we show that every contact structure onS3 is supported by an open book with a planar
page with at most four binding components.

Proof of Theorem 1.1 : We will start with the braidβ = (σ2σ1σ2)
2σ−4

1 σ−4
2 . Figure5

is a picture of the closure of this braid, also known as the chain link. The hyperbolic
structure on its complement was first constructed by Thurston in his notes [24], and
this manifold has been called as the “magic manifold” by Gordon and Wu [13] [14]
as Dehn fillings of this complement recover many of the known hyperbolic manifolds
and account for most of the interesting non-hyperbolic fillings of cuspedhyperbolic
manifolds (see [18] for a classification ofall exceptional surgeries on this link). It is the
3-cusped hyperbolic manifold with smallest known volume and complexity [1].

It is easy to see by blowing down twice that(−1,−2,−4) surgery on this link yields
S3 (see below for the more general case).

Figure 5: Surgery on the chain link

Therefore, by our Proposition2.2, it follows that the open book with pageS, a four-
holed sphere, andφ = τα

a τβ
bτγ

cτdτ−2
e τ−2

f is an open book onS3 when

(α−1,β−3,γ−1) = (−1,−2,−4)

More generally, consider the braidβ = (σ2σ1σ2)
2σ−2p

1 σ−4
2 and perform Dehn surgery

with coefficients(1−p,−p,−4). In Figure6, we verify that we still obtainS3.
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Figure 6: Surgery on a family of links yieldsS3

By reflecting (which amounts to changing orientation), we also know that Dehn surgery
on β = (σ2σ1σ2)

−2σ2p
1 σ4

2 with coefficients(p−1,p,4) also yieldsS3.

After some experimentation, the author found that the following two families of open
books (which are obtained from one another by reflecting the braid as above) will be
sufficient for our purposes. (Note that reflecting the braid amounts to changing the
orientation, but sinceS3 has an orientation reversing diffeomorphism, this will still
give an open book onS3. Though, as we will see below the supported contact structure
will change!)

It will suffice to consider the following two possibilities:

φp = τbτ−3
c τdτ−p

e τ−2
f

φ̄p = τ−1
b τ3

cτ−1
d τp

eτ2
f

We will denote the supported contact structures byξp and ξ̄p . Note that in both open
books the monodromies have boundary parallel negative Dehn twists, it is easy to see
that in this case, the monodromies are not right-veering. Therefore, the supported
contact structures are overtwisted.

To determine the contact structures, following the description in [7] (see also [3]),
we will next compute thed3 invariants of the supported contact structures from the
monodoromy data of the open books. First, we briefly review the strategy, for more
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details see[7]. Given φ as a product of Dehn twists about homologically non-trivial
curvesa1, . . . ,ak on a planar surfaceS with n boundary components, one first constructs
the Stein manifoldS×D2 in a standard way by attachingn one-handles toD4, then
one attaches 2-handles along Legendrian realizations ofai on S with ±1 framing
depending on whether the Dehn twist aboutai is left or right-handed. LetW be the
4-manifold thus constructed. Then the contact manifold(Y,ξ) supported by the open
book (S,φ) is the boundary ofW . As long asc1(ξ) = 0 (or more generally a torsion
class) inH2(Y), d3(ξ) is an element ofQ and may be computed by the formula,

d3(ξ) =
1
4
(c2(W)−2χ(W)−3σ(W))+q

whereq is the number of negative Dehn twists in the factorization ofφ. Furthermore,
c2(W) is the square of the classc(W) ∈ H2(W) which is Poincaŕe dual to the class
Σk

i=1rot(ai)Ci ∈ H2(W,Y), whereCi is the cocore of the 2-handle attached alongai

and rot(ai) is the rotation number ofai which can be computed as the winding number
of ai with respect to a standard trivialization of the tangent bundle of the page. Since
we assumec1(ξ) = 0 , c(W) maps to zero under the natural mapH2(W) → H2(Y),
hence it comes from class inH2(W,Y) whose square isc2(W) that appear in the
formula above.

Now, Figure7 is a Kirby diagram for the page of a planar open book with four
boundary components. We drew all the curvesa,b,c,d,e and f that appear in the
above monodromies.

Figure 7: The diagram of the page

In order to compute the rotation numbers, we chose an orientation of the curves (note
that the computation ofc2(W) is independent of this choice). One then computes the
winding numbers of these curves to get:

rot(a) = rot(b) = rot(e) = 1

rot(c) = rot(f ) = rot(d) = 0
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The rest of the proof is a direct homology calculation based on the descriptions
above.

Computation of d3(ξp) and d3(ξ̄p)

Let X , Y , and Z be the 1-handles, which form a basis ofC1(W;Z). Let B,
{C1,C2,C3}, D, {E1,E2, . . .E|p|}, {F1,F2} be the cores of the handles attached cor-
responding to the factorizationφp = τbτ−3

c τdτ−p
e τ−2

f . These form a basis ofC2(W;Z)

and the boundary map can be read off the diagram in Figure7 to be :

d(B) = Y −X d(Ci) = X

d(D) = Z d(D−Ei) = X d(Fi) = Y

Thus, H1(W) = 0 andH2(W) = Z|p|+4. It will be convenient to pick the following
basis of generators:

{C1−D+E|p|,C1−D+E|p|−1, . . . ,C1−D+E1,B+C1−F1,B+C2−F1,

B+C3−F1,F2−F1}

Note that we haveB2 = D2 = −1 and C2
1 = C2

2 = C2
3 = F2

1 = F2
2 = 1 and E2

i =

sgn(p) and any cross term intersection number is zero. The intersection matrix takes
particularly nice form if we add or subtract the firstp elements in the above basis to
the (p+1)th element according to whetherp is negative or positive. So, our new basis
is given by

{C1−D+E|p|,C1−D+E|p|−1, . . . ,C1−D+E1,

B+(1−p)C1 +pD−F1−sgn(p)E1− . . .−sgn(p)E|p|,

B+C2−F1,B+C3−F1,F2−F1}

Therefore, the intersection matrix ofW in the this basis can be calculated to be:

QW =































sgn(p) 0 · · · · · · · · · · · · 0

0
... 0 · · · · · · · · · 0

... 0 sgn(p) 0 · · · · · · 0

...
... 0 1−p 0 0 1

...
...

... 0 1 0 1
...

...
... 0 0 1 1

0 0 0 1 1 1 2































From this one can easily compute thatσ(W) = 2+p, and also we know thatχ(W) =

|p|+ 5. To computec2(W), let us denote the cocores by̌B, {Č1, Č2, Č3}, Ď,
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{Ě1, . . . Ěp}, {F̌1, F̌2}. Then from the calculation of rotation numbers it follows that
c(W) is Poincaŕe dual to

B̌+ Ě1 + . . .+ Ěp

Evaluatingc(W) on our basis ofH2(W), we get the vector(1, . . . ,1,1− p,1,1,0)

hence the Poincaré dual to the pull back ofc(W) to H2(W,Y) is given by(1, . . . ,1,1−
p,1,1,0)t · (QW)−1, which one can calculate to be:































sgn(p) 0 · · · · · · · · · · · · 0

0
... 0 · · · · · · · · · 0

... 0 sgn(p) 0 · · · · · · 0

...
... 0 0 −1 −1 1

...
...

... −1 p −1+p 1−p
...

...
... −1 −1+p p 1−p

0 0 0 1 1−p 1−p −1+p





























































1
...
1

1−p

1

1

0































Hence

c2(W) = (sgn(p), . . . ,sgn(p),−2,−2+3p,−2+3p,3−3p) · (1, . . . ,1,1−p,1,1,0)

= 9p−6

The number of negative Dehn twists is given byq(W) = 5+ |p|+p
2 . Finally, we

compute:

d3(ξp) =
1
4
(9p−6−2(|p|+5)−3(2+p))+5+

|p|+p
2

= 2p−
1
2

This only covers half of the overtwisted contact structures onS3, to get the other half,
we considerξ̄p . Note, thatξ̄p is obtained by orientation reversal. Therefore, we do
not need to compute all the above invariants from scratch. Namely, we have:

c2(−W) = −c2(W) = −9p+6

χ(−W) = χ(W) = |p|+5

σ(−W) = −σ(W) = −p−2

q(−W) = 2+
|p|−p

2

Therefore, we have:

d3(ξ̄p) =
1
4
(−9p+6−2(|p|+5)−3(−p−2))+2+

|p|−p
2

= −2p+
5
2
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We determined the binding number of all the overtwisted contact structures. The
proof of Theorem1.1 will be completed once we determine the support norm of
the overtwisted contact structures. Note that because all of the overtwisted contact
structures are supported by a planar open book with page a four-holedsphere, we have
that sn(ξ) ≤ 2 for all ξ. We also know that ifd3(ξ) 6= −1

2,
1
2,

3
2 , then bn(ξ) = 4,

therefore the only way for these contact structures to have support norm strictly less
than 2 is when they are supported by an open book with page a torus with oneboundary
component. Now, recall the well-known fact that the only genus one fibred knots onS3

are trefoil and figure-eight knot and the corresponding open bookshave monodromy
τ±1

a τ±1
b , wherea and b are standard generators of the homology of the torus, (this

follows from for example [17]). It is now easy to see thatτaτb , τaτ−1
b , τ−1

a τb are
obtained by positively stabilizing the open books with annulus page supporting the
unique tight contact structure, and the overtwisted contact structureξ 1

2
, andτ−1

a τ−1
b is

obtained by negatively stabilizingξ 1
2
, hence corresponds toξ 3

2
. This completes the

proof of Theorem1.1.

n < − 1
2 n = − 1

2 n = 1
2 n = 3

2 n >
3
2

bn 4 3 2 3 4

sn 2 1 0 1 2

sg 0 0 0 0 0

ξst

1

−1

0

3 Positive factorizations

In this section we give a proof of Theorem1.3 in the following two propositions.
Recall that for the four-holed sphereS, Map(S,∂S) = Z4×F2. The first homology is

H1(Map(S,∂S)) = Z6 where the class of a general elementφ = τα
a τβ

bτγ
cτδ

dτε1
e τη1

f . . .τεk
e τηk

f

is given by(α,β,γ,δ,∑k
i=1 εk,∑k

i=1 ηk). We will prove the following proposition:

Proposition 3.1 Let φ = τα
a τβ

bτγ
cτδ

dτε
eτη

f , thenφ admits a positive factorization if and
only if min{α,β,γ,δ} ≥ max{−ε,−η,0}

Proof Supposeφ = τC1 . . .τCk is a positive factorization inMap(S,∂S). We consider
the quotient relation inH1(Map(S,∂S)) = Z6.

(α,β,γ,δ,ε,η) = [τC1]+ . . .+[τCk ]

Now, by topological classification of surfaces observe that any simple closed curveCi

is conjugate inMap(S,∂S) to one of the curvesa,b,c,d,e, f or g in Figure2. The



14 Lekili

classes of Dehn twists around these curves inH1(Map(S,∂S)) are given by[τa] =

(1,0,0,0,0,0), [τb] = (0,1,0,0,0,0), [τc] = (0,0,1,0,0,0), [τd] = (0,0,0,1,0,0),τe =

(0,0,0,0,1,0), [τf ] = (0,0,0,0,0,1) and [τg] = (1,1,1,1,−1,−1). For the latter, ob-
serve that by the lantern relation we haveτg = τaτbτcτdτ−1

e τ−1
f . Let us denote byei ∈Z6

the vector withith coordinate 1 and other coordinates 0 and letn = (1,1,1,1,−1,−1).
Therefore, each class[τCi ] is equal to either someej or n. Now, if φ has positive
factorization then

(α,β,γ,δ,ε,η) = p0n+
6

∑
i=1

piei

for somepi ≥ 0. Thus if ε or η is negative,p0 ≥ max{−ε,−η}, which shows that
min{α,β,γ,δ} ≥ max{−ε,−η,0} as desired.

Conversely, ifε,η≥0, then the given factorization is positive as long as min{α,β,γ,δ}>

0. Without loss of generality, suppose next thatε < 0 andη = ε + r for r ≥ 0. We
have min{α,β,γ,δ} ≥−ε, set−ε = k > 0. Then by using the lantern relationk times,
we obtain the central element(τf τeτg)

k . We first use this to kill the negative powers of
f , to get:

φ = τα−k
a τβ−k

b τγ−k
c τδ−k

d τ−k
e τ−k

f (τf τeτg)
kτr

f

= τα−k
a τβ−k

b τγ−k
c τδ−k

d τ−k
e τ−k

f τk
f (τeτg)

kτr
f

= τα−k
a τβ−k

b τγ−k
c τδ−k

d τ−k+1
e τg(τeτg)

k−1τr
f

The proof will be completed once we show thatτ−k+1
e τg(τeτg)

k−1 has a positive
factorization. We do this by induction and using the well-known fact that iff : S → S
a diffeomorphism andC a simple closed curve then the equalityτf (C) = f−1τCf holds.
For k = 1, the expression is equal toτg so it is positive. We write

τ−k+1
e τg(τeτg)

k−1 = τ−k+1
e τgτ−(−k+1)

e τ−k+2
e τg(τeτg)

k−2

= ττk−1
e (g)τ

−k+2
e τg(τeτg)

k−2

The latter expression is positive by induction hypothesis, which completes theproof.
In fact, we can simply see that

φ = τα−k
a τβ−k

b τγ−k
c τδ−k

d ττk−1
e (g)ττk−2

e (g) . . .ττe(g)τgτr
f

Remark 3.2 Suppose more generally thatφ = τα
a τβ

bτγ
cτδ

dτε1
e τη1

f . . .τεk
e τηk

f . Let ε =

∑k
i=1 εk andη = ∑k

i=1 ηk . Then the same argument usingH1(Map(S,∂S)) gives thatφ
has a positive factorization only if min{α,β,γ,δ} ≥ max{−ε,−η,0}. However, it is
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easy to see that this is not sufficient. For example,τeτf τ−1
e τ−1

f satisfies this condition,
but one can check that this is not a right-veering monodoromy hence cannot be written
as a product of right-handed Dehn twists (by [15] the supported contact structure can
not even be tight). On the other hand, the argument given in the above proof clearly
gives a positive factorization ofφ if min{α,β,γ,δ} ≥ ∑k

i=1max{εi,ηi,0}.

We next determine whether or not the Ozsváth-Szab́o contact invariant vanishes for
these contact structures. In our case, it turns out that this is equivalent to whether or
not the contact structure is Stein fillable.

Proposition 3.3 Let φ = τα
a τβ

bτγ
cτδ

dτε
eτη

f , then the contact invariantc+(φ) is non-zero
if and only if min{α,β,γ,δ} ≥ max{−ε,−η,0}

Proof Let us defineφa , φb , φc , φd to be the induced monodromies on the three-holed
planar surface after one “caps off” the boundary components parallel to a, b , c or d by
gluing a disk to the corresponding boundary component and extending themonodromy
by identity on this disk. Letξa , ξb , ξc andξd be the corresponding contact structures
obtained this way.

In [2] Corollary 1.3, Baldwin proves that if the contact invariant of any of the contact
structuresξa , ξb , ξc andξd is zero, then it must be the case thatc+(φ) = 0. Without
loss of generality, suppose thatε = −k < 0, andα < k . Then let’s consider the open
book φb where the boundary component parallel to the curveb is capped off. In
that case,e becomes isotopic toa, and no other curves become isotopic to these pair.
Therefore, the monodromyφb hask−α left-handed Dehn twists around the boundary
component corresponding toa, which shows that the supported contact structureξb

is overtwisted [15]. Therefore, the contact invariantc+(ξb) = 0 by [21]. Hence, it
follows thatc+(φ) = 0.

Conversely, if min{α,β,γ,δ} ≥ max{−ε,−η,0}, then by the previous proposition, the
supported contact structure is Stein fillable, hencec+(φ) 6= 0 by [21].

Remark 3.4 As in the previous remark, for the more general class of diffeomor-
phisms,φ = τα

a τβ
bτγ

cτδ
dτε1

e τη1
f . . .τεk

e τηk
f , the above argument shows thatc+(φ) = 0 when

min{α,β,γ,δ}< max{−ε,−η,0}. However, the converse is not true again by the same
example given there, namelyτeτf τ−1

e τ−1
f has vanishingc+(φ) = 0, since it supports

an overtwisted contact structure ([21]). We would like to point out that this is an
overtwisted contact structure onT3.
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4 An example

4.1 Poincaŕe homology sphere

Once we have the surgery description on pure 3-braid closures, it is easy to play around
with simple 3-braids and surgeries on them to get interesting open book decompositions
on various manifolds.

Proof of Theorem 1.2: The simplest non-trivial pure 3-braid is arguablyβ = (σ2σ1σ2)
2σ−4

1
whose braid closure is shown in Figure8.

Figure 8: The braid closure ofβ = (σ2σ1σ2)
2σ−4

1

We first verify below that if we do surgery on the closure of this braid with surgery coeffi-
cients(k,1,2), then the result isk−5 surgery on the left-handed trefoil. By Proposition
2.2, we obtain an open book with page a four-holed sphere andφ = τk+1

a τ2
bτcτdτ−2

e . In
particular, the(4,1,2) surgery yields the infamous Poincaré homology sphere which
has a unique tight contact structure.

Figure 9: Surgery on the left-handed trefoil

It is easy to see that the monodromyφ = τk+1
a τ2

bτcτdτ−2
e is right-veering. In fact,

the monodromy is given by a multi-curve, and it is easy to see that all the boundary
components are protected. To be more careful, since the right-veering diffeomorphisms
is a submonoid ofAut(S,∂S), it suffices to show thatτaτ−2

e is right-veering with respect
to the boundary component encircled bya. To see this, we can apply the Lemma 3.3
of [15]. We first put a hyperbolic structure onS so that the boundary components are
geodesics. Next, we need to find a subsurfaceS′ of S with geodesic boundary so that
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the boundary component ofS encircled bya is a common boundary component ofS
and S′ and thatτ−2

e is identity onS′ . This is easily accomplished by takingS′ to be
the pair-of-pants that has boundary at the boundary components encircled bya andb
and also a geodesic curve which encircles botha and b (parallel toe). Note that by
isotopinge if necessary, we can arrange thatS′ is disjoint from e and has geodesic
boundary. Thus Lemma 3.3 of [15] applied as above to each boundary component of
S shows thatφ = τk+1

a τ2
bτcτdτ−2

e is right-veering fork ≥ 0.

We next prove that(S,φ) is also not destabilizable. If it were, then it would be
a stabilization of an open book(P,φ′), with page P a three-holed sphere, where
φ′ = τp

aτq
bτr

c for the curvesa, b and c are as in Figure1. As we noted before, such a
(P,φ′) is an open book on a Seifert fibred space withe0 = ⌊−1

p⌋+⌊−1
q⌋+⌊−1

r ⌋. Now,
sincee0 for the Poincaŕe homology sphere is−2, it follows that at least one of the
exponentsp,q or r is negative (for example,τ−2

a τ3
bτ5

c is an open book on the Poincaré
homology sphere). Any stabilization which gives a page with four holed sphere must be
obtained by attaching a 1-handleh to a fixed boundary component ofP and introducing
a new monodromy curves which intersects the cocore ofh at a unique point, so that
φ = τsφ′ , whereφ′ is extended by identity alongh to a diffeomorphism ofS. We now
argue that the monodromy of every such open book is not right-veering.Indeed, by
noting that the curves is constraint to intersect the cocore ofh (which is a properly
embedded arc that connects the top two boundary components ofS, in Figure10), it
is easy to see that one could always find a diffeomorphism ofS (not necessarily fixing
boundary components but sending boundary components to boundary components),
such that the configuration of monodoromy curves inτsφ′ is as in Figure10, where
the sets of curvesx, y and z depicted are a permutation of the images of the sets of
curves corresponding to Dehn twists arounda, b andc after stabilization. Indeed,S
is composed of two pairs-of-pants, separated by a curve parallel tox curves in Figure
10, and noting the fact thats intersects cocore ofh at a unique point, we can arrange
by isotopy so that either it does not intersect the common boundary of the twopair-of-
pants or it intersects at precisely two points, and now apply a diffeomorphism of the
pair-of-pants at the bottom, which fixes the boundary component parallelto x curves,
but rotates the other boundary components if necessary. Finally, since we know that
at least one of the sets of curvesx or y or z are all negative Dehn twists, by looking
at Figure10, it is now easy to see that the monodromyτsφ′ is not right-veering. This
proves thatφ cannot be destabilized.

On the other hand, it follows from the obstruction result of[6] that the unique tight
contact structure on the Poincaré homology sphere cannot support a planar open book.
(Alternatively, it is known that the unique tight contact structure on the Poincaŕe
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Figure 10: Stabilized open books

homology sphere is Stein fillable, hence, by the results of Wendl [26], if a planar open
book supports this contact structure, it should have a positive factorization but this
contradicts our Theorem1.3. )

Therefore, the contact structure supported by the open book(S,τ5
aτ2

bτcτdτ−2
e ) is an

overtwisted one, which completes the proof of our Theorem1.2.

Remark 4.1 Note that the way we argued for the overtwistedness ofτ5
aτ2

bτcτdτ−2
e is

quite special to the case of Poincaré homology sphere. In particular, we used the fact
that the unique tight contact structure on this manifold is not supported by a planar open
book. A similar argument can be made fork = 0,1,2,3 to obtain right-veering, not
destabilizable monodromies which support overtwisted contact structures (using the
classification result in [11], which in particular says that all the tight contact structures
on these manifolds are Stein fillable). However, we do not know ifτk+1

a τ2
bτcτdτ−2

e is
overtwisted or tight fork > 4. These are Seifert fibered manifoldsM(−2; 1

2,
2
3,

k
k+1),

they havee0(M) = −2 but they are not L-spaces. The classification of tight contact
structures on these Seifert manifolds seems not yet to have been completed. Note that
the corresponding monodromies are all right-veering diffeomorphisms andthe contact
invariants of the corresponding contact structures are zero.
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Sci. École Norm. Sup. (2010), To appear.



20 Lekili

[21] P. Ozsv́ath, Z. Szab́o, Heegaard Floer homology and contact structures, Duke Math. J.
129(2005) 39–61

[22] P. Ozsv́ath, A. Stipsicz, Z. Szab́o, Planar open books and Floer homology, Int. Math.
Res. Not.2005(2005) 3385–3401

[23] Prasolov, V. V., Sossinsky, A. B.,Knots, links, braids and 3-manifoldsTranslations
of Mathematical Monographs, 154. American Mathematical Society, Providence, RI,
1997.

[24] W. Thurston,The Geometry and Topology of 3-manifoldsPrinceton University, 1978.
[25] A. Wand,Mapping class group relations, Stein fillings, and planar open book decom-

positionsarXiv:10062550 (2010)
[26] C. Wendl,Strongly fillable contact manifolds and J-holomorphic foliationsDuke Math

J.151(2010) 337–384

Max-Planck Institut f̈ur Mathematik, Bonn, Germany

ylekili@mpim-bonn.mpg.de

mailto:ylekili@mpim-bonn.mpg.de

