Solutions to Exercises in Cassels Lectures on Elliptic Curves

Yank: Lekili

Chapter 0

No exercises given.

Chapter 1

No exercises given.

Chapter 2

1) For each sets of p,m,r given, either find an x € Z such that
r—zfp<p™

or show that no such x exists.

(i) p=257,r=1/2, m=1;

» |3 — x| <2571 if and only if 257 | 2z — 1. So, take x = 258/2 = 129.

(i) p=3,r="T7/8, m=2;

> ]% — x| <372 if and only if 9 | 8z — 7. So, take x = 2.

(iii) p=3,r=7/8, m =T,

> |Z—2| <37 7ifand only if 37 | 8z—7. We try to solve 8z = 7(3") order by order fori = 2,...,7.
For i = 2, the previous exercise gives 2 is a solution, so let’s write x = 2 + 3%ay + 3%a3 + 3%ay +
3%as + 3%ag for a; € {0,1,2}. 8.2 —7 =9 so to solve 8x = 7(27) we need a non-zero az. We try
az = 1 and get 8.(249) — 7 = 81 = 0(81), hence we can take x = 2 + 32 + 3*ay + 3%a5 + 3%as.
We try as = 1, then 8(2+ 9+ 81) — 7 = 729 = 35. Hence, we get x = 2+ 9 + 81 + 729. Finally,
let us try ag = 1, we compute 729 + 8.729 = 9.729 = 38, So, take x = 821.

(iv)p=3,r=5/6, m=29;

» |2 — 2| <37%if and only if 3'° | 6z — 5 (since 3 | 6). But, this is impossible since 62 — 5 =
2(3).
(V)p:5,7’:1/4,m:4;



» |3 — 2| <57%if and only if 51 | 4z — 1.

Let’s try to solve 4z = 1(5%) for i = 1,2,3,4. Write 2 = ag + 5a1 + 5%as + 5%a3 with a; €
{0,1,2,3,4}. We can easily see ag = 4 solves 4x = 1(5). Next, we try 4.(4 + 5aq) = 1(25). This
reduces to 20a; = 10(25), which has a solution a; = 3. Next, we have 4.(4+5.3+25a2) = 1(125)
which reduces to 100as = 50(125). So, take ag = 3. Finally, we have 4.(4+5.3+25.3+125.a3) =
1(625) which is equivalent to 500a3 = 250(625). Hence, a3 = 3. So, take x = 4+ 5.3 + 25.3 +
125.3 = 469.

2) Construct further examples along the lines of Exercise 1 until the whole business seems
trivial.

» Take p = 57, just kidding.
3) For given p, m,r either find an x € Z such that

r — xQ‘p <p "

or show that no such z exists.
(i) p=>5,r=—-1,m=4;

> | —1-— $2|p < 57% if and only if 5*|22 + 1. Let’s try 2 = ag + a15 + a25® + a353. We
need aZ + 1 = 0(5). There are two solutions to this: ap = 2,3. We look for solutions of
the form zg = 2 + a15 + a25” + a3b> and x; = 3 + b5 + ba5% + b35%. Next, we need to
solve (2 + a15)2 +1 = 0(25) and (3 + ;15)2 +1 = 0(25). We get 5 + 20a; = 0(25) and
10 + 30b; = 0(25). Thus, a; = 1 and b; = 3. Next, we solve (2 + 1.5 + a25%)? + 1 = 0(125)
and (3 + 3.5 + b252)2 + 1 = 0(125). We get 50 + 100ag = 0(125) and 75 + 25b9 = 0(125). Thus,
as = 2 and by = 2. Finally, we look for solutions to (2 + 1.5 + 2.52 + a35%)? + 1 = 0(125)
and (3 + 3.5+ 2.5 + b35%)? 4+ 1 = 0(125). Expanding these, we find 125 + 500a3 = 0(625) and
250 + 125b3 = 0(625), so az = 1 and b3 = 3. Therefore, the solutions are

2+1.5+25%4+1.5% 3+35+25%+3.5

(ii)) p =5, r =10, m = 3;

» [10 — 22|, < 572 if and only if 53 | 22 — 10. This means 5|22 but that implies 25/x?. However
25 1 10, therefore, there is no solution to this with € Z.

(iii) p=13, r=—4, m = 3;

» | —4— 22|, <1373 if and only if 133 | 22 + 4.

We see easily that 3244 = 0(13) so let’s try & = 3+a113+a213%. Then, we get (34 13a1)?+4 =
0(132). Hence, 13+ 78a; = 0(169), so a; = 2. Then, we need to solve (3 +2.13 + a2.13%)? +4 =
0(13%). This gives 5.13% 4 a258.13%2 = 0(13?), hence as = 10. So, take z = 3 + 2.13 + 10.132.

There is another solution if you try z = 10 4+ b;13 + b313%. and working this out gives another
solution z = 10 + 10.13 + 2.13%.

(iv)p=2,r= -7, m=6;



» | —7— 2%, <27%if and only if 26 | 22 + 7.

We try out z = 1+ 2a1 + 22as + 23a3 + 2%a4 + 2%a5 for a; € {0, 1}. If we square this, we see that
whether as = 0 or 1 does not matter, therefore, we can take as = 0. Let’s consider modulo 32,
then by a similar reason whether a4 = 0 or 1 doesn’t matter, so let’s consider the equation:

(14 2a; + 2%as + 2%a3)? + 7 = 0(32)

We see that this is equivalent to (1+2aj +4as)?+16a3+7 = 0(32). Let’s now reduce to modulo
(16), then we get the equation

(1 + 2a1)* + 8ag + 7 = 0(16)

Now, by inspection, we can see that the only solutions are a; = 1,a3 = 0 or a; = 0,a2 = 1.
Getting back to the modulo (32) equation, we get that the only solutions are a; = 1,a9 =
0,a3 =1 or a1 = 0,a2 = 1,a3 = 0. Finally, we want to see if either of these can be extended
to the solution of the original problem for some a4 € {0,1}. We try z = 1 + 2.1 4+ 8.1 + 16a4
and x = 1 + 4.1 4 16ay4 for ay € {0,1}. In the first case, we get 22 + 7 = 128 + 32a4(64) and in
the second case we get 22 + 7 = 32 + 32a4(64) and we see that the latter one gives the solution:
r=1+41416.1=21.

V)p=T7,r=—-14, m=4;
> | — 14— 22 |,< 7% if and only if 74 | 2% + 14.

It follows that 7 | = but then 72 | #2. Now, we arrive at contradiction, because 74 | % + 14, in
particular implies 72 | #2 + 14 and this together with 72 | 22 implies 72 | 14 which is false.

(vVi)p=T7,r=6,m=3;
» |6 — 22|, < 773 if and only if 73 | 2% — 6.

No solution because there is no z € Z such that 2% — 6 is divisible by 7 as can be easily checked
by trying out x =0,1,2,3,4,5,6.

(vVil) p=7,r=1/2, m = 3;
» |3 — 2|, <773 if and only if 73 | 22% — 1.

Looking modulo 7, we see we have x = 2 4 Ta; + 7ay or © = 5 + 7by + 7%by are possible
solution. We then look at modulo 72, we get 72 | 7 + 7a; and 72 | 28by, so we take a; = 6
and by = 0. Finally, 73 | 2(2 + 7.6 + 7%a2)? — 1 gives 73 | 2.72 + a27?, hence az = 5. Similarly,
73| 2(5 + T%by)? — 1 gives 73 | 7% + 6b27%, thus by = 1. We conclude that 2 + 7.6 + 72.5 and
5+ 72.1 are the desired solutions.

4) As in Exercise 2.
» Solution as in Exercise 2.

5) Let p > 0 be a prime, p = 2(3). For any integer a,p { a, show that there is an = € Z, with

.'173:CL.



» Consider the group homomorphism = — 23 from F) to itself. Since 3 1 p — 1, there are no
order 3 elements in FX. Therefore, this map is injective, hence also surjective. This means that
we can find x1 with 23 = a(p). Next, suppose that we have 23 = a(p") and pose z,+1 = x, +p"y
and we seek to solve 3 | = a(p"*). We compute 23| = (z, + p"y)* = x3 + 3p"a2y(p" ).
'T%*a
p’!L

As by assumption p” | 23 — a, if we let y such that 322y = (p) (which we can do since

p13x2, as pfaand p#3), then p"t! | a;;g’lﬂ — a as required.

Chapter 3

6) (i) Let p > 2 prime and let b,c € Z, ptb. Show that bz? + ¢ takes precisely %(p + 1) distinct
values mod p for x € Z.

» It suffices to show the special case b = 1,¢ = 0, since bm + ¢ = bn + ¢(p) implies m = n(p)
as p1b. Now, 22 = y2(p) then (z — y)(x + y) = 0(p), hence = = y(p) or x = —y(p). Therefore,
the map = — 22(p) is two-to-one except at 0, so the number of elements in the image is
2 2 -
(ii) Suppose that, further, @ € Z, p { a. Show that there are z,y € Z such that bz? + ¢ =
2
ay*(p)-

» The sets of elements of the form ba?+c and ay? both contain % elements since ]%1 —1—% > p,
these sets have to overlap.

7) Let a,b,c € Zp, |a|, = |b|, = |¢|, = 1 where p is prime, p > 2. Show that there are z,y € Z,
such that ba? + ¢ = ay?.

» From the previous exercise, we know that there is a solution (z1,y1) modulo p. Suppose
(2, yn) satisfy bz2 + ¢ = ay?(p"). Let zp11 = 2 + p"u and yp11 = yn + p"v. Then, we want
to solve bx2 + 2bx,p"u + ¢ = ay? + 2ay,p"v(p™*1). This boils down to solving 2bx,u — 2ay,v =
%f%_c (p). This can be solved as long as p does not divide both z,, and y,, and we know that
because |c[, = 1.

8) Let p > 2 be prime, a;; € Z (1 <14,j < 3), aj; = a;j and let d = det(a;;). Suppose that p { d.
Show that there are x1, 2,23 € Z not all divisible by p, such that Z” ajrix; = 0(p).

» Suppose a;; = aj; # 0, make a Z-linear change of co-ordinates by sending x; — x; — a;jx;
to transform }, . a;;jx;z; to 173 + foxd + f323. The condition on d becomes p { fi fofs. Take
x3 = 1 (or any integer that is not divisible by p), then the problem reduces to what we solved
in Exercise 1 by letting fi = b, 21 =, fo = —a, 12 =y, f373 = c.

9) Let a,b,c € Z, 2 abc. Show that a necessary and sufficient condition that the only solution
in Qy of ax?® + by? + cz? = 0 is the trivial one is that a = b = c(4).

» Suppose (a1, a2, as) # 0 is a non-trivial solution in Q2 then we can assume that max|a;|2 = 1
by multiplying with an element of Q. This means that at least one the a; is a unit. Now, since
aa? + baj + ca3 = 0 and 2 { abe, it follows that precisely two of the a; are units. Because of the
non-archimedean inequality, we must have two of the |aa1|?, |bas|?, |cas|? must be equal and the



other one is less than or equal to. Suppose, for instance, that |as| = |ag| = 1, and |a;| < 1. By
examining modulo 2, we see then that |a;| < 1. Now, 2 | aj, hence it follows that b + ¢ = 0(4)
but b, ¢ are odd, hence b is not equivalent to ¢ modulo 4.

Conversely, suppose that (a,b,c) # (1,1,3) or (1,3,3) modulo 4, and we want to construct a
solution in Q2. By multiplying the equation with —1, we can assume that we are in the case where
(a,b,¢) = (1,1,3) modulo 4, or equivalently we are interested in the equation ax?+by? = (—c)z2.
Now, multiply both sides with —(1/c) to and redefine a, b to reduce to the case ax? + by? = 2>
where we still have (a,b) = (1,1) modulo 4. We now appeal to Lemma 4 from Chapter 2, which
says that az? 4 by? is a square in Qs if and only if ax? +by? = 1(8). We have that a, b are either
1 or 5 modulo 8. So it suffices to find solutions for the four equations: x4 y? = 1(8),52% +y? =
1(8), 2% + 5y? = 1(8), 522 + 5y? = 1(8). It is very easy to solve these congruence equations. For
example (3,0),(1,2),(2,1),(2,1) are solutions in the respective order.

10) For each of the following sets of a, b, ¢ find the set of primes p (including oo) for which the
only solution of az? 4+ by? + ¢z2 =0 in Qy is the trivial one:

(i) (a,b,c) = (1,1,-2)

» Since the equation is homogeneous for p # oo, we may assume that if there is a non-trivial
solution (z,y, 2), then z,y, z € Z,.

We see that (1,1,1) is a solution in Z. Therefore, there are non-trivial solutions for every p
(including o).

(ii) (a,b,c) = (1,1,-3)

» This is the equation 22 +y? = 322. It is easy to obtain solutions over R such as (1/3,0,1).
There are no non-trivial solutions over Q9 by the previous exercise since 1 = —3(4). There no
solutions over Q3 since the only way 224y? is divisible by 3 is if both x and y are divisible by 3 but
that implies z has to be divisible by 3, and continuing this way we see that |z|3 = |y|3 = |z]3 = 0,
which implies ¢ = y = z = 0 € Q3. There are non-trivial solutions over any other prime by
Exercise 2.

(iii) (a,b,c) = (1,1,1)

» This is the equation 2% + y? + 22 = 0. There are no non-trivial solutions over R since the left
hand side is strictly positive unless x = y = z = 0. There are no non-trivial solutions over Q2 by
the previous exercise. There are non-trivial solutions over any other prime by Exercise 2.

(iv) (a,b,c) = (14,-15,33)
» This is the equation 142 + 3322 = 15y°.

There are non-trivial solutions over R: Take, for example, (15v/14,0,141/15). There are non-
trivial solutions over Q2 by the previous exercise, since 14 is not equivalent to 33 modulo 4. By
Exercise 2, there are non-trivial solutions over any prime p > 11. It remains to the understand
the cases p =3,5,7,11.

We see that |z|3 < 1, hence we can write z = 3% with & € Z3. We then get the equivalent
equation, 4272 + 1122 = 5y2. Multiplying both sides by 5, we get 5.4232 + 5522 = (5y)%. Now,



we can appeal to Lemma 3 from Chapter 2, which says that a number is a square in Qs if and
only if it is over F3. Reducing mo 3, we get 5.42%2 + 5522 = 22. Hence, for any value of z, we
will get solutions.

1422 + 3322 = 422 + 322(5). The only way 422 + 322 is divisible by 5 is if both x and z are
divisible by 5 but that implies that y has to be divisible by 5, and continuing this way we see
that |z]s = |y|s = |2|5 = 0, which implies x =y =z = 0 € Q5.

1592 — 3322 = y? + 222(7). The only way y> + 222 is divisible by 7 is if both y and z are
divisible by 7 but that implies that = has to be divisible by 7, and continuing this way we see
that |z|7 = |y|7 = |2|7 = 0, which implies z =y = 2 =0 € Q7.

If we multiply both sides by 14 we get to the equivalent equation: (14x)% = 14.15y? — 14.332°.
To see that this has solutions over Q17 we can appeal to Lemma 3 from Chapter 2, which
says that a number is a square in Qq; if and only if it is over F1;. Reducing mod 11, we get
14.15y% — 14.332% = 4. Hence, for any non-zero value of y, we will get solutions.

11) Do you observe anything about the parity of the number N of primes (including oo) for
which there is insolubility? If not, construct similar exercises and solve them until the penny
drops.

» [t seems to be always even.

12) (i) Prove your observation in (6) in the special case a = 1,b = —r,¢c = —s, where r, s are
distinct primes > 2. [Hint. Quadratic reciprocity]

» This is the equation 22 = 3% + s22. Given 7, s are prime numbers, the only primes where we

may not have non-trivial solutions are p = 2,r, s. By Exercise 4, there are non-trivial solutions
in Qg if and only if at least one of r and s is 1 mod (4). As for solutions Q, we need to see if
2?2 = 522(r) is solvable or equivalently whether s is a quadratic residue modulo r, and similarly
for Q4 we need to see if 22 = ry?(s) is solvable or equivalently whether r is a quadratic residue
modulo s. The required evenness is now a direct consequence of quadratic reciprocity law which
says: If 7 or s are congruent to 1 modulo 4, then: x? = r(s) is solvable if and only if 22 = s(r)
is solvable, and if r and s are congruent to 3 modulo 4, then: 2 = r(s) is solvable if and only if

2?2 = 5(r) is not solvable.

(i) [Difficult.] Prove your observation for all a,b,c € Z.

» This is equivalent to quadratic reciprocity. A proof is given in Cassel’s book “Rational
quadratic forms” Lemma 3.4.



