Elliptic Curves - Coursework 1

Due 15 November

You can earn at most 5 points. Choose a combination that adds up to 5.

1) (1 point) Prove that a p-adic number $\alpha \in \mathbb{Q}_p$ is in $\mathbb Q$ if and only if it has an eventually periodic expansion, that is, there exists some N and s such that $a_i = a_{i+s}$ for all $i > N$.

2) (1 point) Let n be a positive integer. Then n can be represented as a sum of four squares of integers:

$$
n = u_1^2 + u_2^2 + u_3^2 + u_4^2, \qquad u_1, u_2, u_3, u_4 \in \mathbb{Z}.
$$

(Hint) One can suppose $n = p$ a prime (product of two sums of four squares is a sum of four squares). Let a, b be integers such that $a^2 + b^2 + 1 \equiv 0 \pmod{p}$. Consider a lattice $\Lambda \subset \mathbb{Z}^4$ consisting of integers (u_1, u_2, u_3, u_4) such that

$$
u_1 \equiv au_3 + bu_4 \pmod{p}
$$
 and $u_2 \equiv bu_3 - au_4 \pmod{p}$

3) (1 point) Consider the cubic curve $C: X^3 + 2Y^3 + 4Z^3 - 7XYZ = 0$. Show that none of the inflection points of C are defined over $\mathbb Q$. Using Nagell's algorithm transform C into the Weierstrass form. Express the transformation as a birational map $\phi : \mathbb{P}^2 \to \mathbb{P}^2$. Can you find the base locus $B(\phi) \cap C$ of your transformation? To which points do these map to under the isomorphism induced by ϕ ?

4) (2 points) (i) Show that the intersection of two quadric surfaces, that is, the simultaneous solutions to two homogeneous equations of degree 2 in 4 variables, can be put in the Weierstrass form, if a smooth point is known.

(ii) Show that the group law on

$$
X^2 = Y^2 - T^2, \qquad Z^2 = Y^2 + T^2
$$

with $(1, 1, 1, 0)$ as neutral element is given by $\mathbf{x}_3 = \mathbf{x}_1 + \mathbf{x}_2$ where

$$
x_3 = x_2t_2y_1z_1 - x_1t_1y_2z_2
$$

\n
$$
y_3 = y_2t_2z_1x_1 - y_1t_1z_2x_2
$$

\n
$$
z_3 = z_2t_2x_1y_1 - z_1t_1x_2y_2
$$

\n
$$
t_3 = t_2^2x_1^2 - t_1^2x_2^2 = t_2^2y_1^2 - t_1^2y_2^2 = t_2^2z_1^2 - t_1^2z_2^2
$$

5) (2 points) Suppose that $P = (x, y)$ is a point on the cubic curve

$$
y^2 = x^3 + ax^2 + bx + c
$$

(i) Show that the x-coordinate of the point $2P$ is given by the formula

$$
x(2P) = \frac{x^4 - 2bx^2 - 8cx + b^2 - 4ac}{4x^3 + 4ax^2 + 4bx + 4c}
$$

(ii) Derive a similar formula for the y-coordinate of $2P$ in terms of x and y.

(iii) Find a polynomial in x whose roots are the x-coordinates of the $P = (x, y)$ satisfying $3P = \mathcal{O}$. (Hint. Use the equivalent condition $2P = -P$.)

(iv) For the particular curve $y^2 = x^3 + 1$, find all the points satisfying $3P = \mathcal{O}$. Note that you will need complex numbers.