Diagonalisation of quadratic forms

Definition 0.1. Let k be any field, and let V' be a k-linear vector space. A symmetric bilinear
pairing on 'V is a map (-,-) : V. x V — k such that for all oy, € k and vi,v9,v3 €V,

o (a1v1 + agu2,v3) = a1(v1,v3) + az(va, v3),
o (v3, 101 + aue) = aq(vs, v1) + as(vs, v2), and
o (v1,v9) = (vg,v1).
Example 0.2. Dot product in R™ over R.
Definition 0.3. If char(k) # 2, then the associated quadratic form to a symmetric bilinear
pairing is
Qv) = (v,v), veV.

Remark 0.4. The quadratic form Q is uniquely determined by (-,-), but the converse is also
true, since

Qv +v2) = (v1 +v2,v1 +v2) = (v1,01) + (V1, V2) + (V2, V1) + (v2, v2) = Q(v1) + Q(v2) 4+ 2(v1, v2),

by bilinearity and symmetry, so

(Qv1 + v2) — Q(v1) — Q(v2)) -

N | -

(v1,v2) =

Example 0.5. Let V = k", and let A be a symmetric n X n matriz over k. Then
(v1,v2) = UIAUQ ck, wv,veV,

is a symmetric bilinear pairing. More generally, let V be any finite-dimensional vector space, so
V = spani{e1,...,en} for {e;} a k-basis, and let the (i,j)-th entry of A be (e;,ej). Under the
unique isomorphism

0

¢o:V =k e |1],

we get a symmetric bilinear pairing

w,w) = p(v) Ap(w) € k, v,w e V.

Definition 0.6. A quadratic space over k is an ordered pair (V, (-,-)) for V a finite-dimensional
k-linear vector space, and (-,-) : V. x V' — k a symmetric bilinear pairing. Two quadratic spaces
(V,(-,-)) and (W,((-,-))) are isometric if there exists ¢ : V. — W an isomorphism such that
(v,w) = ((d(v), p(w))) for all v,w € V, so any quadratic space is isometric to a specimen from
the example.



Remark 0.7. Change of basis has the following effect. Let A be the matriz of the symmetric
bilinear pairing (-,-) in the basis ey, ..., e,. If the matriz of the change of basis is B, in the new
basis the matriz of the symmetric bilinear pairing is BT AB, since (Bv) " A(Bw) = v" (BT AB)w.

Theorem 0.8 (Gram-Schmidt orthogonalisation process). If (V, (-,+)) is a quadratic space, then

V' has a basis ey, ..., e, in which the matriz of (-,-) is diagonal.

Proof. Two cases. If Q = 0, then (-,-) = 0. Otherwise there exists v € V' such that Q(v) # 0.
Let ey = v, and
vt ={we V| {v,w) =0}

This is a k-linear subspace. This is trivial as w +— (v,w) is k-linear. Then v ¢ ker(v,-),
so dimvt = dimV — 1. We apply the process to (v, (-,-)|,.), by using induction on the
dimension. O

Theorem 0.9. If char(k) # 2, then for F € k[Xy,...,X,] homogeneous of degree two, there
exists a linear transformation, such that after the change of variables, F is of the form

ozng + -+ aanl, o, a1, a9 € k.

Proof. Let F(Xo,...,X,) = ZK]- aijX;X; for a;; € k. It is the quadratic form on k™!
associated to the bilinear pairing in the standard basis with matrix A = (b;;), where

1 . .
b — J2%s 7 < J
ij =\ 1 S
505 1> ).

Now apply the Gram-Schmidt theorem. O
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