
Diagonalisation of quadratic forms

Definition 0.1. Let k be any field, and let V be a k-linear vector space. A symmetric bilinear
pairing on V is a map ⟨·, ·⟩ : V × V → k such that for all α1, α2 ∈ k and v1, v2, v3 ∈ V ,

• ⟨α1v1 + α2v2, v3⟩ = α1⟨v1, v3⟩+ α2⟨v2, v3⟩,

• ⟨v3, α1v1 + α2v2⟩ = α1⟨v3, v1⟩+ α2⟨v3, v2⟩, and

• ⟨v1, v2⟩ = ⟨v2, v1⟩.

Example 0.2. Dot product in Rn over R.

Definition 0.3. If char(k) ̸= 2, then the associated quadratic form to a symmetric bilinear
pairing is

Q(v) = ⟨v, v⟩, v ∈ V.

Remark 0.4. The quadratic form Q is uniquely determined by ⟨·, ·⟩, but the converse is also
true, since

Q(v1+v2) = ⟨v1+v2, v1+v2⟩ = ⟨v1, v1⟩+ ⟨v1, v2⟩+ ⟨v2, v1⟩+ ⟨v2, v2⟩ = Q(v1)+Q(v2)+2⟨v1, v2⟩,

by bilinearity and symmetry, so

⟨v1, v2⟩ =
1

2
(Q(v1 + v2)−Q(v1)−Q(v2)) .

Example 0.5. Let V = kn, and let A be a symmetric n× n matrix over k. Then

⟨v1, v2⟩ = v⊤1 Av2 ∈ k, v1, v2 ∈ V,

is a symmetric bilinear pairing. More generally, let V be any finite-dimensional vector space, so
V = spank{e1, . . . , en} for {ei} a k-basis, and let the (i, j)-th entry of A be ⟨ei, ej⟩. Under the
unique isomorphism

ϕ : V → kn, ei 7→


0
...
1
...
0

 ,

we get a symmetric bilinear pairing

⟨v, w⟩ = ϕ(v)⊤Aϕ(w) ∈ k, v, w ∈ V.

Definition 0.6. A quadratic space over k is an ordered pair (V, ⟨·, ·⟩) for V a finite-dimensional
k-linear vector space, and ⟨·, ·⟩ : V × V → k a symmetric bilinear pairing. Two quadratic spaces
(V, ⟨·, ·⟩) and (W, ⟨⟨·, ·⟩⟩) are isometric if there exists ϕ : V → W an isomorphism such that
⟨v, w⟩ = ⟨⟨ϕ(v), ϕ(w)⟩⟩ for all v, w ∈ V , so any quadratic space is isometric to a specimen from
the example.
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Remark 0.7. Change of basis has the following effect. Let A be the matrix of the symmetric
bilinear pairing ⟨·, ·⟩ in the basis e1, . . . , en. If the matrix of the change of basis is B, in the new
basis the matrix of the symmetric bilinear pairing is B⊤AB, since (Bv)⊤A(Bw) = v⊤(B⊤AB)w.

Theorem 0.8 (Gram-Schmidt orthogonalisation process). If (V, ⟨·, ·⟩) is a quadratic space, then
V has a basis e1, . . . , en in which the matrix of ⟨·, ·⟩ is diagonal.

Proof. Two cases. If Q ≡ 0, then ⟨·, ·⟩ ≡ 0. Otherwise there exists v ∈ V such that Q(v) ̸= 0.
Let e1 = v, and

v⊥ = {w ∈ V | ⟨v, w⟩ = 0}.

This is a k-linear subspace. This is trivial as w 7→ ⟨v, w⟩ is k-linear. Then v /∈ ker⟨v, ·⟩,
so dim v⊥ = dimV − 1. We apply the process to (v⊥, ⟨·, ·⟩|v⊥), by using induction on the
dimension.

Theorem 0.9. If char(k) ̸= 2, then for F ∈ k[X0, . . . , Xn] homogeneous of degree two, there
exists a linear transformation, such that after the change of variables, F is of the form

α0X
2
0 + · · ·+ αnX

2
n, α0, α1, α2 ∈ k.

Proof. Let F (X0, . . . , Xn) =
∑

i≤j aijXiXj for aij ∈ k. It is the quadratic form on kn+1

associated to the bilinear pairing in the standard basis with matrix A = (bij), where

bij =

{
1
2aij i ≤ j,
1
2aji i > j.

Now apply the Gram-Schmidt theorem.
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