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1 Outline (and notation):

Fix G a complex semisimple connected Lie group with Lie algebra g. We will think of g as the
tangent space TeG of G at the identity. The action of G on itself by conjugation g : h→ ghg−1

naturally induces an action on TeG. This is the adjoint action, which we denote by

Ad : G→ GL(g).

Differentiating this action, we get the adjoint action of g given by

ad(x) : y → [x, y].

Let B be a Borel subgroup, .i.e., a maximal solvable subgroup of G and let T be a maximal torus
contained in B. Let U = [B,B] be the unipotent radical of B so that B = T · U , in particular
B is connected.

Let b, h and n denote Lie algebras of B, T and U respectively. Then n = [b, b] and h is called a
Cartan subalgebra of g. The dimh is called the rank of g.

We also consider the normalizer NG(T ) of T . The quotient WT := NG(T )/T is called the
Weyl group of G. As we shall see, its isomorphism type does not depend on T . So, in general
we simply write W for the Weyl group.
Example 1.1. If G = SLn(C) then we can take B to be the upper-diagonal matrices. T to be
the diagonal matrices and U to be the upper diagonal matrices with all of its diagonal entries
are equal to 1. W ∼= Sn is isomorphic to the symmetric group.

A basic fact from representation theory of finite groups W is as follows:
Proposition 1.2. The number of irreducible representations of W on finite dimensional complex
vector spaces is equal to the number of conjugacy classes in W .

Indeed, both numbers are equal to dimension of vector space of class functions on W . However,
this count does not actually exhibit an explicit bijection between the two sets. In other words,
given a conjugacy class, we don’t know how to construct an irreducible representation.

In the case W is the Weyl group, there is a construction of Springer, which gives an effective
bijection between these two sets.
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Springer constructed representations of the Weyl group W on the cohomology of certain varieties
BX - the so-called Springer fiber over a nilpotent element X ∈ g. Here, we say that an element
X ∈ g is nilpotent if it acts nilpotently via the adjoint representation. In other words, ad(X)
acts nilpotently as an endomorphism of the vector space g. 1 The nilpotent cone N is defined
as the set of all nilpotent elemetns in g:

N := {X ∈ g : X nilpotent }

In good characteristic (such as char=0, or see page 19 of [J]) and if G is simply connected, a
theorem of Springer that says that there is a G-equivariant isomorphism between the unipotent
variety U and the nilpotent cone N . (See [H]. Section 6.20).

A quick way to define the Springer fiber over the nilpotent element X ∈ g is as follows:

BX := {gB ∈ G/B : g−1Xg ∈ n}

Note that B0 = G/B. As the course progresses, we will study the geometry of these fibers in
more depth.

As the name indicates, these are the fibers of the Springer resolution:

p : Ñ → N

where

Ñ := {(gB,X) ∈ G/B ×N : g−1Xg ∈ n}

It turns out that Ñ can be identified with the cotangent bundle T ∗(G/B). As such, it is an
example of a symplectic variety, i.e. it carries a holomorphic 2-form Ω which is non-degenerate
and closed. (Note that this should not be confused with C∞ symplectic forms, which appear
for ex. in Kähler geometry). There are many interesting symplectic varieties, such as ADE
resolution of C2/Γ where Γ is a finite subgroup of SL2(C), Hilbert schemes of points on C2, and
more generally Nakajima quiver varieties.

The actual construction of the W -representations on the cohomology of Springer fibers can be
done in many different but equivalent ways and all of them require some machinery. (See, for
example, the discussion in Section 9.5 of [H]). This will be one of our main goals in this course.
A remarkable point is that the Weyl group W does NOT act on the variety BX for X 6= 0.
Nonetheless, it does act on the cohomology of the varieties BX .
Example 1.3. In the case G = SLn(C), one can identify G/B with full flag variety, F l(Cn).
The points of this space are complete flags:

{0} ⊂ V1 ⊂ V2 . . . Vn−1 ⊂ Vn = Cn

1If we work over fields of finite characteristic, the definition nilpotency is more complicated. We need to
first fix G such that Lie(G) = g. Then, we define X ∈ g to be nilpotent, if it acts nilpotently on each finite
dimensional G-module (under the derived representation). Note that this definition depends on both g and G.
For a semisimple Lie algebra g in char = 0, this is equivalent to the simpler definition that we have given.
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where Vi are subspace of Cn of dimension i. We can think of X ∈ sln as an n×n matrix. Then,
we can identify the Springer fiber BX with the set of flags fixed by X, i.e. :

BX = {V• : XVi ⊂ Vi}

In this case, Springer constructs an irreducible representation of Sn for every unipotent conju-
gacy class in SLn(C). Note that the theory of Jordan normal form gives a bijection between the
conjugacy classes of unipotent elements in SLn(C) and partitions of n. It is also well-known that
conjugacy classes in Sn correspond to cycle decompositions of permutations, hence to partitions
of n.

Springer originally worked over finite characteristic and used l-adic cohomology groupsH∗(BX ,Ql).
Later on, he has found a way to carry out his construction over C. In the first part of this course,
we will work over C and use Borel-Moore homology following the treatment in [CG].

Another important part of the picture is the adjoint quotient map:

χ : g→ g//G = SpecC[g∗]G

which comes from the map of algebras C[g∗]G → C[g∗]. Note we can also identify the target
with h//W via the Chevalley isomorphism of the ring of invariants:

C[g∗]G ∼= C[h∗]W

Springer theory can be seen as study of singularities of the adjoint quotient map.

The resolution p : Ñ → N extends to a map q : g̃ → g where g̃ = {(X, b) : X ∈ b ⊂ g}. More
substantially, we have a simultaneous resolution, introduced by Grothendieck:

Ñ g̃ h

N g h//W

p q

χ̃

χ

This means that χ̃ is a smooth morphism (in fact, a C∞ fiber bundle) such that for each t̃ ∈ h
, χ̃−1(t̃) is a resolution of singularities of the corresponding adjoint fibre χ−1(t).

We end this outline with the simplest example. If g = sl2. In this case, for a suitable choice
of coordinate χ : C3 → C given by (a, b, c) → a2 + b2 + c2. The nilpotent cone N = χ−1(0)
has an ordinary node singulariy. The simultaneous resolution consists of doing a base extension:
t2 = a2 + b2 + c2 and then blowing up the singular point, which replaces it with CP 1 ∼=
SL2(C)/B.
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2 Symplectic geometry (basics)

An important geometric property of the simultaneous resolution map

χ̃ : g̃→ h

is that it is a smooth fibre bundle (topologically trivial) with fibres diffeomorphic to G/T and
the total space g̃ has a canonical Poisson structure such that the fibres x̃−1(t) are the symplectic
leaves, i.e. the restriction of the Poisson bracket to the fibres make them into (holomorphic)
symplectic manifolds. 2

We now give a basic treatment of these structures following [[CG], Chapter 1].
Definition 2.1. Let X be a C∞-manifold, a smooth complex manifold or an algebraic variety.
A symplectic structure on X is a non-degenerate regular (in the corresponding category) 2-form
ω such that dw = 0.

At least in the beginning, we will mostly work with algebraic varieties and ω will be a holomorphic
non-degenerate closed 2-form.

Note that non-degeneracy of ω implies that X be even-dimensional.

The most standard example is C2n with coordinates q1, . . . qn, p1, . . . , pn and

ω = dp1 ∧ dq1 + . . .+ dpn ∧ dqn.

The roots of symplectic geometry are in classical mechanics. I will review this shortly after we
define Poisson structures as well.

An important difference between symplectic and Riemannian geometries is that there is no local
invariants of symplectic structure, unlike for ex. the curvature of a Riemannian metric. Given
a symplectic manifold, one can always find a local chart in which the symplectic form takes
the canonical form as the one in C2n above. This theorem is known as the Darboux theorem
can be found in any standard symplectic geometry book (such as the book of Ana Cannas da
Silva’s).

We next give another standard construction of a symplectic manifold, which will be relevant for
our purposes.
Example 2.2. Let M be any manifold (say, a complex smooth algebraic variety), then T ∗M
has a canonical symplectic structure. Let π : T ∗M →M be the projection. Consider the 1-form
λ on T ∗M given on T ∗αM by

λα(v) = α(π∗(v)) ∈ C

We set ω = dλ. Clearly, this is a closed 2-form. To check, non-degeneracy, let us express λ
in local coordinates. Let qi be local coordinates on M , and pi are coordinates in T ∗α dual to ∂

∂qi
on TαM . Then the 1-form λ =

∑
i pidqi and ω =

∑
i dpi ∧ dqi, so ω agrees with the standard

example in these coordinates, hence it is non-degenerate.

2In fact, the work of Kronheimer and Biquard shows that the fibres have hyperkähler structures, but that’s
harder result, which uses moduli spaces of solutions to Nahm’s equations.
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We have mentioned in the outline that there is a resolution p : Ñ → N of the nilpotent cone,
which is isomorphic as an algebraic variety to T ∗(G/B). The above example equips it with
a canonical symplectic form. This is also the fibre χ̃−1(0). We will see later on that over an
open dense subset, the fibres of χ̃ correspond to coadjoint orbits. These also have canonical
symplectic forms.

Recall that the adjoint action Ad : G → End(g). Dually, we have the coadjoint action, Ad∗ :
G→ End(g∗) given by

〈Ad∗(g)ξ, x〉 = 〈ξ, Ad(g−1)x〉

where 〈, 〉 is the natural pairing g∗ × g→ C. We also have the linearization:

ad∗x(ξ)(y) = ξ([y, x])

(Check that this is a Lie algebra homomorphism! 3)

One feature of coadjoint orbits, when you consider a few examples, is that they are always
even-dimensional. This is no accident. Indeed, a very important class of symplectic manifolds
are the orbits of these coadjoint actions.
Proposition 2.3. Let O ⊂ g∗ be any coadjoint orbit. There is a canonical G-invariant sym-
plectic structure on O. (It is called the Kirillov-Kostant-Souriau symplectic structure.)

Proof. Let α ∈ g∗ be an arbitrary element. The G-orbit O through α can be naturally identified
withG/Gα whereGα is the stabilizer - this is always a closed subgroup. Let us write gα = LieGα,
then we have that TαO = g/gα. We define a skew-symmetric form on TαO by:

ωα : g× g→ C, ωα(x, y) = α([x, y]).

Let us prove that this descends to a non-degenerate form g/gα × g/gα → C. We need to check
that for y ∈ gα, ωα(x, y) = 0 for all x ∈ g. Now, notice that α[x, y] = ad∗y(α)(x). Hence, if this
is zero for all x ∈ g, it means that ad∗y(α) = 0, but this means y ∈ gα. G-invariance can be seen
from the identity:

(Ad∗(g)α)([x, y]) = α([ad(g−1)x, ad(g−1)y])

It remains to prove that the induced 2-form ω on O is closed. Given x, y, z ∈ g, ξx, ξy, ξz be the
corresponding G-invariant vector fields on O. For example, (ξx)(α) = ∂

∂texp(tx) · α|t=0.

We use the following well-known Cartan formula:

dw(ξx, ξy, ξz) = ξx·ω(ξy, ξz)+ξz·ω(ξx, ξy)+ξy·ω(ξz, ξx)−ω([ξx, ξy], ξz)−ω([ξz, ξx], ξy])−ω([ξy, ξz], ξx)

Evaluating at α, we have the formulae: (ξx ·ω(ξy, ξz))(α) = −α([x, [y, z]]) and ω([ξx, ξy], ξz)(α) =
α([[x, y], z]). The result now follows by applying Jacobi identity.

3There is a sign error in [CG]’s computation of ad∗ in Prop. 1.1.5.
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As we shall see, there is a dense set of points α ∈ g∗, for which Gα is a maximal torus and O
is a closed subvariety of g∗, in particular it is affine (this probably fails in general over finite
characteristic, see [H] and please let me know if you find an example). Other orbits are smaller
dimensional and in general locally closed subvarieties.

The symplectic structure on the orbits of the coadjoint action plays an important role in the orbit
method approach to representation theory. (See Kirillov’s “Lectures on the orbit method”)

Exercise: Adjoint orbits and coadjoint orbits for g = sln(C) can be identified via the non-
degenerate bilinear form g× g→ C given by (x, y)→ Tr(xy).

Identify sl2 with sl∗2. Take any semisimple element in sl2, i.e. a non-zero 2× 2-matrix with zero
trace that is diagonalizable. Show that the adjoint orbit through this element is isomorphic to
the affine quadric in C3. Explicitly compute the Kostant-Kirillov-Souriau symplectic from Ω on
this affine quadric. In suitable coordinates, such an orbit can be identified with a regular fibre
χ−1(t) of χ : C3 → C, given by {(a, b, c) ∈ C3 : a2 + b2 + c2 = t 6= 0} and then we have:

Ω =
da ∧ db ∧ dc

dχ

If all the eigenvalues of some (hence all) element in the orbit is real, then show that the imaginary
part Im(Ω) coincides with the canonical (real) symplectic form on T ∗S2.

A more conceptual proof of the previous proposition is based on the notion of Poisson mani-
fold.
Definition 2.4. A commutative associative algebra A over C is called a Poisson algebra if it is
equipped with a C-bilinear Lie bracket {, } : A⊗A→ A satisfying the Leibniz identity:

{a, bc} = {a, b}c+ b{a, c}

A Poisson manifold (or variety) is a smooth manifold with a Poisson bracket on its algebra of
regular functions.

We now explain that regular functions O(M) of a symplectic manifold has a natural Poisson
bracket defined in the following way: Let f ∈ O(M) be any regular function. As ω is non-
degenerate, we have an associated vector field Xf defined by the formula:

ω(·, Xf ) = df

We then set:
{f, g} = ω(Xf , Xg)

We leave the verification that this defines a Poisson bracket as an exercise but note that the
Jacobi identity reduces to the relation:

X{f,g} = [Xf , Xg]

Note that to define the bracket operation, we merely used that ω is a non-degenerate form. To
check that the bracket satisfies the Jacobi identity, one has to use that ω is a closed form.

6



In the case of the standard symplectic structure on C2n, the polynomial algebra C[q1, . . . , qn, p1, . . . , pn]
has a Poisson bracket given by:

{f, g} =
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)

Exercise: If f, g ∈ C[q1, . . . , qn, p1, . . . , pn] are homogeneous element of degree 2, then their
Poisson bracket {f, g} is also homogeneous of degree 2. Show that elements of degree 2 form a
Lie algebra canonically isomorphic to the symplectic Lie algebra sp2n.

Poisson structures arise in the context of quantization. Let us briefly touch on this subject.

Let B be an associative filtered (non-commutative) C-algebra with unit. Spelling this out, we
have an increasing filtration by C-vector spaces:

C ⊂ B0 ⊂ B1 ⊂ . . .

such that B =
⋃∞
i=0Bi and Bi ·Bj ⊂ Bi+j for all i, j ≥ 0.

Let us consider the associated graded algebra A = grB = ⊕iBi/Bi−1. We have the following
proposition:
Proposition 2.5. Suppose B is a associative filtered algebra as above, and grB = A is commu-
tative. Then, there is a natural Poisson bracket on A.

Proof. We define a bilinear pairing

{, } : Bi/Bi−1 ×Bj/Bj−1 → Bi+j−1/Bi+j−2

as follows:

{[bi], [bj ]} = bibj − bjbi (mod Bi+j−2)

Commutativity of A makes this well-defined. Axioms of Poisson algebra is straightforward to
verify.

The problem of quantization is to go the other way. One usually starts with a commutative
algebra, such as the algebra of regular functions O(M) on a variety, together with a Poisson
bracket on it, and seeks to find a non-commutative deformation algebra B such that grB =
A. Often one considers formal deformations, that is, an associative algebra structure on the
C[[h]]-algebra B = A[[h]]. The Poisson algebra (A, {, }) is called the quasiclassical limit of the
quantization B.

We will next discuss a quantization in the special case of O(T ∗M) equipped with its Poisson
structure coming from the canonical symplectic structure on T ∗M .

Let TM denote the sheaf of vector fields on M given on an open set U by:

TM (U) := {θ ∈ EndC(OM )(U) : θ(fg) = θ(f)g + fθ(g) for f, g ∈ OM (U)}
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We identify OM with a subsheaf of EndC(OM ) via

{f ∈ OM (U)} → {mf ∈ EndC(OM )(U),mf (g) = fg}

The sheaf of differential operators DX is the C-subalgebra of EndK(OM ) generated by OM and
TM .

For any point of M , we can find an affine open neighborhood U and a local coordinate system
{xi, ∂i} on it such that

xi ∈ OM (U), TU =
n⊕
i=1

OU∂i, [∂i, ∂j ] = 0, [∂i, xj ] = δij

Hence, we have:

DU =
⊕
α∈Nn

OU∂α

where ∂α = ∂α1
1 ∂α2

2 . . . ∂αnn . On such a local coordinate system, we can define a filtration
by:

FlDU =
⊕
|α|≤l

OU∂α

where |α| =
∑

i αi.

Alternatively, for arbitrary U , we can use Grothendieck’s inductive definition of differential
operators via the formula:

FlDU = {P ∈ EndC(OM )(U) : [P,mf ] ∈ Fl−1DU for all f ∈ OM (U)}

and F0DU = OU .

We define grDM =
⊕∞

l=0FlDM/Fl−1DM . Note that if P ∈ FlDM (U) and Q ∈ FmDM (U), then
[P,Q] ∈ Fl+m−1DM (U) (Check this!). Thus grDM is a sheaf of commutative algebras finitely
generated over OM . Indeed, over a local coordinate system {xi, ∂i} as above, we have

grlDU =
⊕
|α|=l

OU∂αi

Hence, grDU = OU [∂1, . . . , ∂n]. Now, we can identify ∂1, . . . , ∂n as a coordinate system of the
cotangent space ⊕ni=1Cdxi. Therefore, letting π : T ∗M → M , there is a canonical identifica-
tion

grDU ∼= π∗OT ∗M |U
Taking global sections, we get that the non-commutative algebra of global differential operators
on M is a quantization of the algebra of regular functions on T ∗M . The natural map σ : DM →
grDM is called the principal symbol. It is not too hard to show that the induced Poisson bracket
on O(T ∗M) coincides with the one coming from the symplectic structure of T ∗M . Indeed, it
suffices to check this on gr1(DM ) which generates O(T ∗M) over OM .

Let us next turn to another important example of a quantization.
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Definition 2.6. Let g be a finite dimensional Lie algebra. The quotient of the tensor algebra Tg
by the ideal generated by expressions x⊗ y− y⊗ x− [x, y] for all x, y ∈ g is called the universal
enveloping algebra and denoted by Ug.

Ug has a canonical filtration:
C = U0g ⊂ U1g ⊂ . . .

where Ujg is the C-linear span of all monomials of degree ≤ j. It is the image C⊕ g⊕ (g⊗ g)⊕
. . .⊕ (g)⊗j under the canonical projection Tg→ Ug.

The following theorem is one of the fundamental results in Lie algebra theory. There are many
proofs (if you are algebraically oriented than see Bergman’s Diamond lemma paper or if you are
geometrically oriented see the book of daSilva-Weinstein; I recommend both!):
Theorem 2.7. (Poincaré-Birkhoff-Witt) There is a canonical graded algebra isomorphism :

grUg ∼= Sg = C[g∗]

Hence, we see that Ug is quantization of a Poisson algebra structure on C[g∗].

Let us calculate the corresponding Poisson bracket. Consider a basis e1, . . . en of g as a C-vector
space. We can then find a set of structure constants ckij ∈ C via:

[ei, ej ] =
∑
k

ckijek

Now, let V be a vector space over C and x1, . . . , xn be coordinates on V . Let ckij for i, j, k =
1, . . . n be arbitrary complex numbers such that

ckij = −ckji

Consider the bivector field on V given by:

Π =
∑
i,j,k

ckijxk
∂

∂xi
⊗ ∂

∂xj

Using this, we define a pairing on C[V ] via:

{f, g} = df ⊗ dg(Π) =
∑

ckijxk
∂f

∂xi

∂g

∂xj

Proposition 2.8. The pairing on C[V ] is a Poisson bracket if and only if ckij form a collection
of structure constants for some Lie algebra g.

Proof. Note that bilinearity and anti-symmetry is already built-in to the definition. In view of
Leibniz rule, the only thing to check is the Jacobi identity for linear functions. A natural basis
of linear functions V ∗ is given by the coordinate functions xi : V → C. For these we have:

{xi, xj} =
∑
k

ckijxk

Therefore, Jacobi identity for the bracket on C[V ] is equivalent to a Lie algebra structure on
g = V ∗.
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Taking V = g∗ and identifying V ∗ = (g∗)∗ ∼= g, we see that the above construction gives the
Poisson structure on C[g∗] induced from Ug. One can express this bracket without appealing to
coordinates as follows. For f, g ∈ C[g∗] and α ∈ g∗ we have:

{f, g} : α→ 〈α, [dα(f), dα(g)]〉

where dα(f) ∈ (g∗)∗ = g is the differential of f at a point α.

Note that because of the anti-symmetry condition ckij = −ckji, the Poisson bivector field Π can

really be seen as a section in Γ(V,Λ2TV ). In general, it is an instructive exercise to show that
for any Poisson structure on regular functions O(M) of a variety M , can be described by a
Poisson bivector field Π ∈ Γ(M,Λ2TM).

One can now give an alternative construction of the symplectic structure on coadjoint orbits.
Given a Poisson manifold (M, {, }), we have Hamiltonian vector fields {f, ·} : O(M) → O(M),
for every function f ∈ O(M). These vector fields span a completely integrable (in general)
singular foliation, each of whose maximal integral sub-manifolds inherits a symplectic structure.
These are called symplectic leaves of the Poisson manifold.

Carrying out this construction in the case of g∗ with its canonical Poisson bracket defined above
shows that the symplectic leaves are precisely the coadjoint orbits in g∗.

2.1 Physical background

In Hamiltonian formulation of classical mechanics, one considers a manifold M with local coor-
dinates q1, . . . qn as the configuration space and T ∗M as the phase space where the coordinates
p1, . . . , pn in the cotangent direction corresponds to momentum variables. Let M = R for
simplicity. One has a Hamiltonian function H : T ∗R→ R given by:

H(x, p) =
p2

2
+ V (x)

where V (x) ∈ C∞(R) is the potential. The equations of motion is given by

df

dt
= {f,H}

Unwinding this, one recovers Newton’s equation. Conservation of energy is the statement
that

{H,H} = 0.

Quantization, replaces the phase space with a Hilbert spaceH (usually a space of L2 functions on
a Lagrangian submanifold) and the observables C∞(T ∗M) are replaced by a non-commutative
operator algebra B of (unbounded) operators on H. The Hamiltonian H is now an element of
B, and Schrödinger’s equation is:

−i~db
dt

= [b,H]
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Here ~ is the Planck constant. Classical mechanics is the quasiclassical limit of quantum me-
chanics. The algebra B is a quantization of C∞(T ∗M) = B/~B with the Poisson bracket:

{ , } = lim
~→0

i[ , ]

~

2.2 Submanifolds

First, let’s study this at the linear level. Let V be a vector space with a symplectic form Ω. For
any vector subspace W ⊂ V , we have its symplectic complement defined by:

WΩ = {v ∈ V : Ω(v, w) = 0 for all w ∈W}

The non-degeneracy of Ω ensures that (WΩ)Ω = W and that when V is finite-dimensional,

dimW + dimWΩ = dimV

Unlike the case of a symmetric form, W ∩WΩ can be non-empty. The following form special
classes of subspaces in a symplectic vector space:
Definition 2.9. A linear subspace W ⊂ V is:

1. Isotropic if W ⊂WΩ.

2. Coisotropic if WΩ ⊂W

Isotropic subspaces can be equivalently defined as subspaces W such that Ω|W ≡ 0. Coisotropic
subspaces can be equivalently defined by subspaces cut out by linear forms l1 = l2 = . . . = lk = 0
such that their pair-wise Poisson bracket {li, lj} = 0.

Subspaces which are isotropic and coisotropic at the same time are called Lagrangian. The
dimension of Lagrangian subspaces is equal to half the dimension of the symplectic space. La-
grangian subspaces are maximal isotropic spaces and minimal coisotropic spaces.

Definition 2.10. Let M be a symplectic variety. A possibly singular subvariety Z of M is called
isotropic (resp. coisotropic, Lagrangian) subvariety of M , if for any smooth point z ∈ Z, TzZ
is isotropic (resp. coisotropic, Lagrangian) subspace of TzM .

In a cotangent bundle T ∗X, the zero-section X is a Lagrangian. More generally, if f ∈ O(X) is
a function on X, then the image of the section df : X → T ∗X is a Lagrangian.

A fibre of a cotangent bundle is also a Lagrangian. This corresponds to the graph of the “delta
function” at a point. More generally, the covectors applied at the points of a submanifold Y ⊂ X
and vanishing on the tangent vectors to Y form a Lagrangian submanifold T ∗YX ⊂ T ∗X, called
the conormal bundle to Y . It is the graph of the “delta function” of the submanifold Y .

On a cotangent bundle T ∗X there is a natural C∗ action that corresponds to scaling along
the cotangent fibre. In a local coordinate chart, this action is generated by the Euler vector
field:

Z =
∑
i

pi
d

dpi
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Under the isomorphism given by Ω : T ∗X → TX, the canonical 1-form λ =
∑

i pidqi is sent to
the Euler vector field, i.e., ιZΩ = λ.

Therefore, if a submanifold is invariant under the C∗ action and isotropic, then λ vanishes on
it identically. The Lagrangian subvarieties of T ∗X that are invariant under C∗ action can be
characterized by the following result of Kashiwara:
Lemma 2.11. (Kashiwara) Let X be a smooth variety and let Λ ⊂ T ∗X be a closed irreducible
(possibly singular) algebraic C∗ invariant Lagrangian subvariety. Let Y be the smooth part of
the image of Λ under the projection π : T ∗X → X, then Λ = T ∗YX.

(Here T ∗YX means closure in the Zariski topology. A proof in analytic category also exists,
though one has to prove that the closure in classical topology gives an analytic subset. See
[HTT, Appendix E] for details. )

Proof. Y is dense open in closed variety π(Λ), hence Λ ⊂ π−1(Y ). Next, since the Euler vector
field Z is tangent to Λreg, the smooth part of Λ and Λ is isotropic, we have

0 = Ω(Z, v) = λ(v), for all v ∈ TΛreg

Therefore λ|Λreg ≡ 0. Now, if α ∈ Λreg ∩ π−1(Y ) is any covector, and let π(α) = y ∈ Y . By
definition, for v ∈ Tα(Λ),

0 = λ(v) = α(π∗(v))

Hence, α vanishes on the image of the map

π∗ : TαΛ→ TyY

By Bertini-Sard’s lemma, there is an open dense set U ⊂ Λreg ∩π−1(Y ) such that, for all α ∈ U ,
the map π∗ is surjective. Since π(U) is open dense in Y , it follows that α(TyY ) = 0 for all y ∈ Y
and α ∈ U . Therefore, we have:

U ⊂ T ∗YX

Now, both sets are varieties of the same dimension and U is open dense in Λ, hence Λ = T ∗YX
by irreducibility of Λ, as required.

Note that our proof appeals to Bertini’s theorem (which holds only in characteristic zero. In fact,
the statement fails in finite characteristic - see Kleiman’s paper Tangency and duality).

More generally, if Λ is any C∗ invariant Lagrangian subvariety, we can find a Whitney stratifi-
cation of X =

⊔
α∈AXα such that Λ has irreducible components T ∗XαX for some α ∈ A.

An application: In case, you are tired of being introduced to too many new notions (you
shouldn’t be!), let us now give an application. (We follow the book Tevelev on projective
duality, though the discussion is very similar to the one given in [CG]).

Let V be a finite dimensional vector space, and G ⊂ PGL(V ) be an algebraic subgroup. We
then have a natural action of G on P(V ) as well as on P(V ∗). We have the following duality
result for these actions:

12



Theorem 2.12. (Pjaseckii) Suppose that G has finitely many orbits on P(V ). There is a natural
bijection between G-orbits on P(V ) and the G-orbits on P(V ∗).

Before, we give the proof, let us first give the following simple result as preparation:
Lemma 2.13. Let G be a connected algebraic group action on an algebraic variety X with
finitely many orbits. Then any irreducible G-stable closed subvariety of X is the closure of a
G-orbit.

Proof. Let Y be an irreducible G-stable closed subvariety. Let O be any orbit in Y . Let us
call points of O\O boundary points of O where we take the closure in Zariski topology. Now,
notice that the boundary of any orbit is invariant with respect to G action, and of dimension
less than that of the orbit itself. Therefore, the boundary consists of orbits of lesser dimension.
Now, let M be an orbit in Y of maximal dimension. Because of what we have just said, it can
not intersect the closure of other orbits in Y . Since there are only finitely many orbits in Y ,
it follows that M is open in Zariski topology. Therefore, M is an irreducible component of Y .
Since Y is itself irreducible, it follows that Y = M.

Exercise: Consider the action of GL2(C) on C2. Observe that C2\{0} is G-stable but not the
closure of any G-orbit. Why does this not contradict with the conclusion of the lemma?

In fact, we’ll obtain the proof of Pjaseckii’s result as a corollary to projective duality theorem.
Recall that for X ⊂ P(V ) be any irreducible variety. Let C(X) ⊂ V be the affine cone over X.
For any point x ∈ X, we define the embedded tangent space Tx,X ⊂ P(V ) to be the P(Tv,C(X))
where v is any non-zero point on the line x. A hyperplane H ⊂ P(V ) is a tangent hyperplane of
X if Tx,X ⊂ H for some x ∈ Xreg. The closure of the set of all hyperplanes to X is called the
projective dual subvariety X∗ ⊂ P(V ∗).
Theorem 2.14. For any irreducible projective variety X ⊂ P(V ), if z ∈ Xreg and H ∈ X∗reg,
then H is tangent to X at z if and only if regarded as a hyperplane in P(V ∗), z is tangent to
X∗ at H. Hence,

X∗∗ = X

Proof. Consider the incidence variety I0
X ⊂ P(V )× P(V ∗) defined by (z,H) such that z ∈ Xreg

and H is a hyperplane tangent to z. I0
X can be idenitified with the projectivization of conormal

bundle T ∗XregV . Indeed, an equation of a hyperplane H in the projective space P(V ) containing
TzXreg is precisely an element of V ∗ that vanishes along TzXreg, hence an element of T ∗XregV
by definition.

The conormal variety is the closure IX of I0
X . To prove the theorem it suffices to show that

IX = IX∗ . By what we said above, this is equivalent to showing that

T ∗XregV = T ∗X∗regV
∗ ⊂ T ∗(V ) = V × V ∗ = T ∗(V ∗)

Here we have an identification of T ∗V and T ∗(V ∗) as symplectic manifolds, after switching the
sign of the canonical symplectic form on one of them.

13



Now note that T ∗Xreg(V ) is a closed irreducible Lagrangian subvariety of V ×V ∗ that is invariant

under dilations of both V and V ∗. Hence, viewing it as a conical Lagrangian variety in T ∗(V ∗),
we conclude from our Lemma 2.11 above that it is T ∗X∗reg as X∗reg is the smooth part of the image

of its projectition under π : T ∗(V ∗)→ V ∗. This concludes the proof.

Proof of Pjaseckii: Take any G-orbit O ⊂ PN whose closure is not all of PN , then the projective
dual variety of its closure, O∗, is G-invariant, irreducible and non-empty. Therefore, its the

closure of some orbit Õ from our lemma. By the previous theorem O = Õ
∗
.

Remark 2.15. If the number of G-orbits is infinite, then in general there is no natural bijection.

2.3 Moment map

Let (M,ω) be a symplectic manifold, and G be a Lie group acting on M via symplectomorphisms,
that is,

ω(g · x, g · y) = ω(x, y) for all x, y ∈ TmM,m ∈M, g ∈ G

The linearization of the G-action gives a map of Lie algebras:

g→ V ects(M) ⊂ V ect(M)

where V ects(M) are the symplectic vector fields on M , i.e. ξ ∈ V ect(M) such that Lξω =
0.

By the Cartan’s homotopy formula, we have:

Lξω = d(ιξω) + ιξ(dω) = d(ιξω)

Therefore, a vector field ξ is symplectic if and only if the 1-form ιξω is closed.

Recall that any function f ∈ O(M) we have an associated vector field ξf defined via the formula
ιξfω = −df . Since −df is exact, hence closed, the vector fields of the form ξf are always
symplectic. Furthermore, this assignment leads to a Lie algebra homomorphism:

O(M)→ V ects(M)

where O(M) has the Lie algebra structure coming from the Poisson bracket on M .
Definition 2.16. A symplectic G-action on (M,ω) is said to be Hamiltonian, if there exists
a Lie algebra homomorphism H : g → O(M) making the following diagram of Lie algebras
commute:

g

O(M) V ects(M)

H

14



If such an H exists, the dual map µ : M → g∗ defined by:

µ(m)(x) = Hx(m)

is called the moment map.

For ξ ∈ g, let ξM denote the corresponding vector field on M induced by the G-action, then a
convenient way to compute the moment map is the formula:

ιξMω = −d〈µ, ξ〉

Here, we have substituted Hξ = 〈µ, ξ〉. In particular, note that existence of Hξ depends on
whether ιξMω is exact. However, even this obstruction vanishes, it is not immediate that Hξ can
be chosen so that the resulting map g → O(M) is a Lie algebra homomorphism. For x, y ∈ g,
we have:

{Hx, Hy} = H[x,y] + C(x, y)

The action is said to be Hamiltonian if we can take C(x, y) = 0 for all x, y ∈ g.

In terms of the moment map, this corresponds to the requirement that µ : M → g∗ be equivariant
(with respect to coadjoint action of G on g∗) for the action of the identity component G0 ⊂ G.
In other words, we have:

µ(g ·m) = Ad∗(g)(µ(m)), for all g ∈ G0

In practice, G will almost always be connected, in which case G = G0.

In the general case, the function C(x, y) is bilinear, skew-symmetric, and satisfies the identity
:

C([x, y], z) + C([y, z], x) + C([z, x], y) = 0

That is, it is a 2-cocycle in the Lie algebra cohomology of g. Different choices of constants in
the Hamiltonians Hx leads to a modification of the cocycle C by an exact term, in particular we
get a well-defined class [C] ∈ H2(g,C) (say, we are working over C), and the symplectic action
is Hamiltonian if and only if this class vanishes. If the action is Hamiltonian, the functions Hx

are determined up to addition of a 1-cocycle, i.e. a map from g/[g, g]→ C.

In summary, first we need to check the obstructions coming from [ιξMω] ∈ H1(M ;C) vanish.
(Note that since ιξMω is closed 1-form of type (1, 0), any primitive of it would be holomorphic.)
Second, we need to check whether the cocycle C vanishes in H2(g,C), and finally the choices
that we have for Hx are parametrized by H1(g,C).
Remark 2.17. Let g be a Lie algebra and let Ck = Λ∗g→ C be alternating C-linear maps from
g× . . .× g→ C. Define the linear operator δ : Ck → Ck+1 via:

δc(x0, x1, . . . , xk) =
∑
i<j

(−1)i+jc([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xk)

Exercise: Check that δ2 = 0. The cohomology of this complex is the Lie algebra cohomology
defined by Chevalley and Eilenberg.
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For a semisimple Lie algebra g over a field of characteristic zero (such as C), Whitehead’s first
and second lemma implies that H1(g,C) = H2(g,C) = 0. Exercise: Show that if H1(g,C) =
H2(g,C) = 0, any symplectic G-action is Hamiltonian (use the fact that commutator of sym-
plectic vector fields is Hamiltonian).

Examples: 1) Consider the action of a vector space V on itself by translation:

t : q → q + t

This induces a symplectic action on T ∗V = V × V ∗. Note that we have an identification of
g ∼= V . It is straightforward to calculate that the corresponding moment map V × V ∗ → V ∗ is
the projection (q, p)→ p, hence the terminology moment map.

2) Here is a slightly less trivial example:

Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}. Equip it with the (real) rotationally invariant
symplectic 2-form

ω = ιv(dx ∧ dy ∧ dz) = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

where

v = x
d

dx
+ y

d

dy
+ z

d

dz
∈ V ect(R3)

Consider the action of G = S1 on S2 given by (clockwise) rotation around the z-axis. The
generating vector field of the action of S1 is ξ = −x d

dy + y d
dx . One then computes:

ιξω = −dz

Hence, µ : S2 → R given by (x, y, z)→ z is the moment map for this action, where we identified
g∗ with R in the obvious way.

From this we can also deduce the moment map for the action of SO(3) on S2. Identify so(3)
with R3 so that the infinitesimal rotation around the jth basis vector ej maps to ej . This, in
turn, induces an identification of so(3)∗ with R3 and under this identification the moment map
µ : S2 → R3 is just the inclusion map.

3) Let M = C2 with coordinates p, q and Ω = dp ∧ dq. Consider the action of G = SL2(C) on
M . We have

g = sl2 = {
(
a b
c −a

)
|a, b, c ∈ C}

The generating vector fields of the action are given as follows:(
1 0
0 −1

)
→ p

∂

∂p
− q ∂

∂q(
0 1
0 0

)
→ q

∂

∂p(
0 0
1 0

)
→ p

∂

∂q
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The correspond Hamiltonian functions are pq, q2/2 and −p2/2 respectively. Identifying sl2 with
sl∗2 via the invariant non-degenerate bilinear form (A,B) → tr(A · B) allows us to write the
moment map as:

µ : (p, q)→ 1

2

(
pq q2

−p2 −pq

)
Note that this map sends C2 to the nilpotent cone of sl2 ramified at the origin.

4) We next discuss another example of interest to us. Suppose a Lie group G acts on X by
diffeomorphisms. Then, we get an induced symplectic action of G on (M = T ∗X,ω = dλ). To
be pedanting, suppose g ∈ G acts on X by φg : X → X, then the action on M is given by:

(q, p)→ (φg(q), (dφ
∗
g)
−1p)

Clearly, this action preserves λ = pdq, hence is symplectic.

We next show that such an action is always Hamiltonian. Let ξ ∈ g be a generator. Let
uξ ∈ V ect(X) and ũξ ∈ V ect(T ∗X) be the corresponding vector fields on X and T ∗X induced
by the G-action. Clearly,

π∗(ũξ) = uξ

where π : T ∗X → X is the projection. Now, observe that:

Lũξλ = 0

Indeed, as we saw above, λ is invariant under all automorphisms of T ∗X that arise from an
automorphism of X.

Next, consider the function hξ : T ∗X → C defined on a covector α by :

hξ(α) = α(uξ)

We have λα(ũξ) = α(uξ). Therefore, hξ = ιũξλ. On the other hand,

0 = Lũξλ = dιũξλ+ ιũξω = dhξ + ιũξω

Hence, the assignment
H : ξ → hξ = λ(ũξ)

is a Hamiltonian for the G-action on T ∗X.

Exercise: Check that H : g → O(T ∗X) gives a Lie algebra homomorphism. Conclude that the
induced map C[g∗]→ O(T ∗X) is a map of Poisson algebras.
Remark 2.18. Let X be a G-manifold, then the Lie algebra morphism g→ V ect(X) canonically
induces a map

Ug→ DX
This map is clearly filtration preserving and one gets an induced map on the associated graded
algebras:

C[g∗]→ O(T ∗X)

It can be shown that this is the dual to the moment map µ : T ∗X → g∗. Hence, one can think
of the map Ug→ DX as a quantization of the moment map.
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Next, let us specialize to the case X = G/P for P ⊂ G an algebraic subgroup of G. Recall that
X has a unique algebraic structure such that X has a canonical G-action (see for ex. Springer-
Linear algebraic groups, Sec. 5.5.) and we thus get a Hamiltonian G-action on T ∗(G/P ). We
will work out an explicit description of the moment map:

µ : T ∗(G/P )→ g∗

Let p be the Lie algebra of P and p⊥ ⊂ g∗ be the annihilator of p ⊂ g.

Observe that, if we restrict the coadjoint action of G on g∗ to P , then we have, for x ∈ p, ξ ∈ p⊥

and p ∈ P :

〈Ad∗(p)ξ, x〉 = 〈ξ, Ad(p−1)x〉 = 0

Hence, p⊥ is stable under the coadjoint action of P . We can then construct an associated fibre
bundle G ×P p⊥ as the quotient of G× p⊥ by the free P -action :

(g, z)→ (gp,Ad∗(p−1)z)

This quotient is an algebraic variety and projection to the first component turns it into a vector
bundle over G/P , whose fibres are isomorphic to p⊥ (see Springer- Linear algebraic groups,
5.5.8). Indeed, it is obtained by gluing together varieties U × p⊥ where U ⊂ G/P are open sets
over which the principal P -bundle π : G→ G/P have sections, so that π−1(U) ∼= U × P .
Proposition 2.19. There is a natural G-equivariant isomorphism:

T ∗(G/P ) ∼= G ×P p⊥

Proof. Let e = 1 · P/P be the base point. The stabilizer of the G-action on G/P at the point
g · e is the group gPg−1, hence we have, Tg·e(G/P ) = g/Ad(g)p. It follows that for any g ∈ G,
we have an identification:

T ∗g·e(G/P ) = (g/Ad(g)p)∗ = Ad∗(g) · p⊥ ⊂ g∗

To give an isomorphism of bundles, consider G/P × g as a trivial g bundle over G/P . The
infinitesimal action of g on G/P induces a bundle map:

G/P × g→ T (G/P )

with kernel the subbundle E whose fiber at a point gP ∈ G/P is the stabilizer Ad(g)p. It is
now easy to write a bundle map isomorphism G ×P g/p given by :

[g, v]→ (gP,Ad(g)v)

Note that (gP,Ad(g)v) = (gpP,Ad(gp)Ad(p−1)v), hence the map is well-defined, and the bundle
isomorphism follows from isomorphism of fibers.
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This gives an identification of T (G/P ) with G ×P g/p. The dual construction gives an identifi-
cation G ×P p⊥ → T ∗(G/P ) given by:

[g, z]→ (gP,Ad∗(g)z)

where T ∗(G/P ) is viewed as a sub-bundle of the trivial bundle G/P × g∗.

Proposition 2.20. Under the isomorphism T ∗(G/P ) ∼= G ×P p⊥, the moment map µ :
T ∗(G/P )→ g∗ is given by:

(g, z)→ Ad∗(g) · z =: gzg−1, g ∈ G, z ∈ p⊥

Note that this map defined on G× p⊥ descends to the quotient G ×P p⊥.

Proof. Write π : T ∗(G/P )→ G/P for the projection. Let [g, z] represent the equivalence class
of (g, z) ∈ G ×P p⊥ = T ∗(G/P ). For ξ ∈ g, let us write uξ and ũξ the induced vector fields on
G/P and T ∗(G/P ) as before. We have

µ([g, z])(ξ) = λ[g,z](ũξ) = ([g, z])(uξ) = (Ad∗(g) · z)(ξ)

In particular, we have:
Corollary 2.21. Let G be a finite-dimensional semisimple Lie group and B ⊂ G is a Borel
subgroup, then there is a G-equivariant isomorphism

T ∗(G/B) = G ×B n

Proof. Under the isomorphism g∗ ∼= g given by an invariant pairing, b⊥ goes to [b, b] = n.

There are two special classes of vector fields on T ∗(G/P ). Given a 1-form α on G/P , there is an
associated vertical vector field α̃ whose restriction to any fibre T ∗q (G/P ) is the constant vector
field αq, the value of α at q. In local coordinates (qi, pi), the vertical vectors are of the form∑
ai(q)∂/∂pi, corresponding to the 1-form α =

∑
i ai(q)dqi on G/P . In particular, note that

λ = pdq vanishes on these vertical vector fields.

On the other hand, for each x ∈ g there are vector fields ũx induced by the action of G on
T ∗(G/P ).
Lemma 2.22. The vector field ũx is tangent to the fibre T ∗gP (G/P ) if and only if x ∈ Ad(g)p.

Proof The vector field is ũx is vertical at gP if and only if the vector field ux is tangent to the
stabilizer of gP for the G-action on G/P , which is if and only if x ∈ Ad(g)p.

In particular, note that the dimension of the non-vertical vectors of the form ũx at gP is
dim(G)− dim(P ). Therefore, together with vertical vector fields coming from 1-forms on G/P ,
these generate all the tangent vectors to T ∗(G/P ).
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In other words, we get a G-equivariant Ehressmann connection on T (T ∗(G/P )) where the hor-
izontral bundle is given by the vectors of the form ũx which are not vertical. (Compare this to
the Maurer-Cartan connection on T ∗G.)

The canonical symplectic form ω on T ∗(G/P ) can be evaluated on these vector fields easily via
the following formulae (whose proofs we omit):

For any vertical vector fields α̃, β̃:

ω(α̃, β̃) = 0

This is a consequence of the fact that canonical 1-form λ vanishes on any vertical vector field α̃
since π∗(α̃). We can see here that cotangent fibres are Lagrangians, hence T ∗(G/P )→ G/P is
in fact a Lagrangian fibration.

For induced vector fields ũx, ũy, x, y ∈ g, and [g, z] ∈ T ∗gP (G/P ):

ω(ũx, ũy)|[g,z] = z(Ad(g−1)([x, y]))

For any vertical vector β ∈ Ad∗(g)p⊥ ∼= T ∗gP (G/P ) viewed as a tangent vector at α ∈ T ∗gP (G/P )
:

ω(β̃, ũx))|α = β(Ad(g)x)

There is a natural generalization of cotangent bundles, namely twisted cotangent bundles.
Proposition 2.23. Suppose P is connected. Let χ ∈ g∗. Then the subspace χ + p⊥ ⊂ g∗ is
invariant under adjoint action of P if and only if χ|[p,p] = 0.

Proof. Suppose χ + p⊥ is P -invariant. The tangent space to χ + p⊥ gets identified with p⊥,
hence the linearization of the adjoint action of P at identity gives a map:

p→ End(p⊥)

Concretely, this means that for any p ∈ p⊥

ad∗x(χ+ p)(y) = χ([y, x]) = 0 for all x, y ∈ p.

In other words, this is if and only if χ|[p,p] = 0. Conversely, suppose the linearization of the

adjoint action at identity preserves the tangent space p⊥ to χ+ p⊥. This means that χ+ p⊥ is
preserved under the action of a small neighborhood of the identity in P , but since P is connected
this implies the result.

Definition 2.24. For χ ∈ g∗ such that χ|[p,p] = 0, the χ-twisted cotangent bundle of G/P is

defined to be the associated bundle Tχ(G/P ) := G ×P (χ+ p⊥). The projection π : Tχ(G/P )→
G/P has the structure of an affine fibration.
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The twisted cotangent bundle has a canonical symplectic structure ω defined via the formulae
analogous to those for the cotangent bundle.

For vertical α̃, β̃:
ω(α̃, β̃) = 0

For induced vector fields ũx, ũy, x, y ∈ g, and (g, z) ∈ G ×P (χ+ p⊥) :

ω(ũx, ũy)|(g,z) = z(Ad(g−1)([x, y]))

For any vertical vector β ∈ Ad∗(g)p⊥ at gP :

ω(β̃, ũx) = β(Ad(g)x)

In particular, note that the fibres of the projection are affine Lagrangian subspaces.

Exercise: Check that the condition χ[p,p] = 0 makes the 2-form ω well-defined. Show that dω = 0
and that G acts symplectically on Tχ(G/P ).
Remark 2.25. Arnold-Liouville theorem (which you can read in the book of Arnold-Givental
on symplectic geometry) that any smooth fibration p : M → B of a symplectic manifold M
with fibers smooth connected and simply connected Lagrangians is isomorphic as a Lagrangian
fibration to an open subset of a twisted cotangent bundle.

2.4 Coisotropic subvarieties

Let (M,ω) be a symplectic manifold. Recall that Σ ⊂M is coisotropic if for each smooth point
m ∈ Σ,

TmΣω ⊂ TmΣ

where, TmΣω is the symplectic orthogonal of the tangent space TmΣ.

Suppose JΣ ⊂ O(M) is the defining ideal of Σ, we have:
Proposition 2.26. The subvariety Σ is coisotropic if and only if

{JΣ,JΣ} ⊂ JΣ.

Proof. For any f ∈ JΣ, we have the associated Hamiltonian vector field Xf ∈ TmΣω for
m ∈ Σreg since df vanishes on Tm(Σ). Moreover, since dimTΣ + dimTΣω = dimM , the vector
fields of the form Xf span TmΣω. Now, clearly, TmΣ is coisotropic if and only if TmΣω is
isotropic. On the other hand, we have {JΣ,JΣ} ⊂ JΣ if and only if

For all f, g ∈ JΣ, ωq(Xf , Xg) = 0 for all q ∈ Σreg

Suppose Σ ⊂ M is a coisotropic variety, the restriction of ω to Σ fails to be non-degenerate on
TmΣ, and its radical is precisely TmΣω. In fact, TΣω ⊂ TΣ is a vector subbundle. The next
proposition shows that this is integrable subbundle, hence coistropic subvarieties are foliated by
isotropic leaves.
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Proposition 2.27. There exists a foliation on Σ such that, for any m ∈ Σ, the space TmΣω is
equal to the tangent space at m to the leaf of the foliation.

Proof. Recall that by Frobenius theorem, a subbundle E ⊂ TΣ is integrable, if and only if for
any sections X,Y : Σ→ E, [X,Y ] is also a section lying in E.

As in the previous proposition, the vector fields of the form Xf for f ∈ JΣ span the TmΣω for
any m. But now recall that

[Xf , Xg] = X{f,g}

and {f, g} ∈ JΣ by the previous proposition.

The following result will play an important role later on. Recall that a solvable group A is one
whose derived series terminates at the trivial group. Derived series of subgroups are defined
recursively as setting G(0) = G and

G(n) = [G(n−1), G(n−1)]

Note any subgroup and any quotient group of a solvable group is solvable. One of the most
important properties of a solvable algebraic group is that it has a connected codimension 1
normal subgroup. Namely, note that G/[G,G] is abelian and non-trivial. Therefore, it has a
connected subgroup of codimension 1. Now, consider the preimage of that subgroup by the
surjective map π : G→ G/[G,G]. This gives a connected codimension 1 normal subgroup in G.
The existence of such normal subgroups is helpful in making inductive arguments.

For us, the most important example of a solvable group is the group B of invertible upper
triangular n×n matrices. In fact, Lie’s theorem implies that any solvable subgroup of a matrix
group is conjugate to a subgroup of B.

A connected Lie group G is solvable if and only if its Lie algebra g is solvable.
Theorem 2.28. Suppose that a solvable algebraic group A acts on a symplectic variety M in a
Hamiltonian fashion. Let µ : M → a∗ be the corresponding moment map. Then for a coadjoint
orbit µ−1(O) is either empty or a coadjoint subvariety of M .

Here µ−1(O) stands for the reduced scheme associated to the scheme theoretic inverse im-
age.

We will defer the proof of this theorem until later. Partly because the proof is technical and I
am not sure whether you will appreciate it until after you see where it is used. On the other
hand, the following special case is easy to prove:
Proposition 2.29. Suppose that an algebraic group A acts on a symplectic variety M in a
Hamiltonian fashion. Let µ : M → a∗ be the moment map. Let O be a coadjoint orbit consisting
of regular values of µ. Then µ−1(O) is a coadjoint subvariety of M .

Note that since µ is a G-equivariant map, all the points of O are regular values if and only if
one of them is.
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Proof. Let JO ⊂ C[a∗] be the defining ideal of the orbit. (By definition, this is the ideal of
regular functions vanishing on the orbit O, but of course, the associated variety is the closure
of the orbit O. Note that every coadjoint orbit is both open and closed in a∗, hence its closure
uniquely determines the orbit)

Now, recall that the Poisson bracket on O coming from its symplectic structure was induced
from the Poisson bracket on C[a∗]. Therefore, for f, g ∈ JO, we have:

{f, g}|O = {f |O, g|O} = 0

Hence JO is closed under the Poisson bracket. Finally, recall that the dual of µ gives a map of
Poisson algebras:

µ∗ : C[a∗]→ O(M)

hence µ∗(J )O is closed under the Poisson bracket. Since µ−1(O) is assumed to be reduced, and
its regular functions µ∗(J )O) is stable under the Poisson bracket, it follows from what we proved
above that µ−1(O) is coisotropic.

Note that for the above proposition, we did not need that a is solvable. In general, one concludes
as above that µ−1(O) is stable under the Poisson bracket, but the ring of regular functions on
µ−1(O) is, in general, the radical

√
µ∗(JO). This may not be closed under the Poisson bracket

unless a is solvable as the example 3) above shows. Recall that we have SL2(C) acting on C2,

and the moment map is sending (p, q)→ 1
2

(
pq q2

−p2 −pq

)
, the preimage of 0 is just (0, 0), but

this is clearly not a coisotropic.
Remark 2.30. The following important theorem about coisotropic varieties is of similar nature
but it takes place in the setting of quantization. Suppose B is a non-commutative associative
algebra with a filtration such that the associated graded grB = A is a commutative algebra. Let I
be a finitely generated left-ideal of B and consider grI ⊂ A. This is an ideal in A and moreover
it is closed under the Poisson bracket (x, y ∈ I implies xy − yx ∈ I).
Theorem 2.31. (Integrability of characteristics)

√
grI is stable under Poisson bracket on A,

hence defines a coisotropic subvariety in Spec(A).

In the case B is the ring DX of differential operators on , say, smooth affine variety X, and I is
a DX-module, Spec(

√
grI) ⊂ T ∗X is called the characteristic subvariety (or singular support).

3 Complex semisimple Lie Algebras (basics)

3.1 Recollections

NB: When I am preparing the lecture for this part of the course, I do look up all the proofs of
the statements which I don’t remember how to prove. I strongly encourage you to do the same
as we don’t have time to cover all the elementary classical part of the theory in class.

Let G be a complex semisimple connected Lie group with Lie algebra g. Let B be a Borel
subgroup - a maximal solvable subgroup. Today, we will prove Borel fixed point theorem:
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Theorem 3.1. Let B be connected solvable algebraic group action on a complete variety X.
Then B has a fixed point.

Proof. Recall that the fixed point set XG of a G-action on a variety is closed in X. Indeed,
the fixed point set of a single element g ∈ G is the preimage of the diagonal under the map
X → X ×X given by x→ (x, gx). Now, XG is the union of closed sets Xg, hence is closed.

To prove the theorem, we argue by induction. The derived subgroup [B,B] is a proper subgroup
and is solvable, hence by induction X [B,B] is non-empty. Furthermore, since [B,B] is a normal
subgroup of B, X [B,B] is stable under the action of B. Indeed, for any g ∈ [B,B], and b ∈ B,
bgx = gg−1bgx = gx.

Now, recall that G-orbits are locally closed 4. Therefore, the minimal dimensional orbits have
to be closed, hence complete. Now consider such a minimal dimensional orbit O for the action
of B on X [B,B]. Let O = B/Bx be such an orbit where x ∈ O and Bx ⊂ B is the stabilizer of
x. Now, Bx contains [B,B]. Therefore, Bx is a normal subgroup of B. Recall another basic
fact that the quotient of an complex algebraic group by a closed normal subgroup is always an
affine algebraic group. (Without the normal condition, in general, one gets a quasi-projective
variety). Hence B/Bx is and irreducible affine variety. But O is complete, therefore O consists
of one point which is the fixed point for the B-action on X.

This theorem allows one to reduce the study of solvable algebraic groups to subgroups of upper
triangular matrices. Here is a list of some basic facts that you may find in standard textbooks
on Lie theory (see, for ex., Onishchik and Vinberg). Most of these are corollaries of the Borel
fixed point theorem.

Any two Borel subgroups are conjugate, and each Borel subgroup is its own normalizer, i.e.
NG(B) = B. Each maximal torus (a.k.a. Cartan subgroup) is its own centralizer, and its
normalizer is NG(T ) is such that the Weyl group W = NG(T )/T is finite. The number of Borel
subgroups B containing a maximal torus T is finite and the Weyl group permutes them simply
transitively. The union of all Cartan subgroups of contains an Zariski open subset (but is not,
in general, the whole of G - i.e. not every matrix is diagonalizable but most are).

The radical R of an algebraic group G is the unique maximal closed connected normal subroup
of G. It is also given by the intersection of all Borel subroups of G. An algebraic group is said
to be semisimple if its radical is the trivial group; SLn(C) is an example of a semisimple group.
An algebraic group is said to be reductive if its radical is an algebraic torus. GLn(C) is an
example of a reductive group. Equivalently, G is reductive if and only if its unipotent radical is
trivial. Recall that the unipotent radical of G is the unique closed connected normal unipotent
subgroup.

The unipotent radical U = [B,B] of B is a maximal connected unipotent subgroup of G. If T
is a maximal torus in B, then we have the Levi decomposition B = TU .

4Here we are using the action is algebraic. For complex Lie group actions, this is not true. For ex. consider
the action of B = C on X = C∗ × C∗ given by (z, (u, v))→ (ezu, eαzv) for α ∈ R\Q
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For any element x ∈ g we write CG(x) for the centralizer in G. Recall that this is the stabilizer
of the adjoint action of G on g. Lie algebra of the stabilizer subgroup is Cg(x) which is the
centralizer of x in g. We can also identify Cg(x) with Ker(ad(x)).

Recall that the rank of a Lie algebra g is the defined to be the dimension of any maximal torus
(which are all conjugate).

It turns out that for any x ∈ g one has the following inequality:
Proposition 3.2. dim(CG(x)) ≥ rk g.

Proof. Let B be any Borel subgroup containing x and U = [B,B] be its unipotent radical. In
particular, [B, x] ⊂ U , hence CB(x) ⊂ Ux. Therefore, dimCB(x) ≥ codimBU = rk g. This
clearly implies dimCG(x) ≥ rk g.

Definition 3.3. Work over C, an element x ∈ g is

• regular if dim(CG(x)) = rk g, i.e., the stabilizer of ad(x) is of minimal possible dimension.

• semi-simple if ad(x) ∈ GL(g) is diagonalizable.

• nilpotent if ad(x) ∈ GL(g) is nilpotent.

Let h ⊂ g denote a Cartan subalgebra, i.e., Lie algebra of a maximal torus. Any element of h is
semisimple. Any semisimple element of g is conjugate to an element of h.

Exercise: For x regular semisimple, Cg(x) is a Cartan subalgebra. (Hint: Let h = Cg(x),
show that x ∈ h is regular semisimple, conclude that h is nilpotent. Finally, show that h is
self-normalizing.)

Recall the basic fact that any element x ∈ g has a unique Jordan decomposition:

x = xs + xn

where xs is semi-simple and xn is nilpotent and [xs, xn] = 0. (This is a consequence of the basic
linear algebra result called Jordan decomposition. First embed g ⊂ GL(V ) faithfully using a
representation V and apply the Jordan decomposition theorem).

For x ∈ g, consider the characteristic polynomial of the endomorphism adx :

Px(t) = det(tI − ad(x))

If n = dimg, we can write:

Px(t) =
n∑
i=0

ai(x)ti

where we can view ai(x) ∈ C[g] as a G-invariant polynomial on g of degree n − i. Clearly, the
polynomial Px(t) is invariant under the adjoint action of G. Therefore, a0 = a1 = . . . = ar−1 = 0
identically, where r = rkg.

Indeed, we have:
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Lemma 3.4. x is regular semisimple if and only if ar(x) 6= 0.

Proof. Note that ar(x) 6= 0 if and only if t = 0 is a zero of Px(t) of order exactly r. In paritcular,
x is regular. Let’s show next that x is semisimple. Any x = xs + xn since, xs and xn commute,
we can simultaneously put ad(xs) and ad(xn) upper triangular form. Since ad(xn) is nilpotent,
its diagonal entries are identically zero. Hence, the characteristic polynomial of ad(xs) and
ad(xs + xn) coincide. Therefore, if x is regular, it follows that xs is regular. On the other hand,
xs being regular and semisimple, implies tha t it’s centralizer is a Cartan subalgebra. But, if
ar(x) 6= 0, the centralizer already includes the a subspace of dimension r consisting of diagonal
matrices. In addition, xn is also in the centralizer, but a Cartan subalgebra has dimension r,
therefore xn = 0. Conversely, if x is semisimple regular, then after bringing ad(x) to a diagonal
form, there would be precisely r non-zero entries, hence this implies that ar(x) 6= 0.

In particular, note that the union gsr of regular semisimple elements are open in g.

Example 3.5. For g = sl2 = {
(
a b
c −a

)
|a, b, c ∈ C} We have

Px(t) = t3 − 4(bc+ a2)t

Hence rk(g) = 1 and the regular semisimple elements are those such that a2 + bc 6= 0, i.e. ,
regular semisimple elements coincide with non-nilpotent elements.

Note however that a nilpotent element can be regular. For example, show that

(
0 1
0 0

)
is

regular.

Recall the upper semicontinuity of dimension theorem states that if f : X → Y is dominant mor-
phism of irreducible varieties, and d(x) is the largest dimension of any component of f−1(f(x))
containing x, then for all n the set {x ∈ X|d(x) ≥ n} is closed in X.

Let us apply this to action of G on a variety X:
Proposition 3.6. Let G be action on an irreducible variety X, then let Xn = {x ∈ X|dim(Gx) ≥
n} where Gx is the stabilizer subgroup. Then, Xn is closed in X for each n ≥ 0.

Proof. Consider the inverse image of the (closed) diagonal in X × X under the morphism
(g, x)→ (gx, x), that is:

Z = {(g, x) : gx = x}

This is closed in G×X. Let π : Z → X is the projection map. This is certain surjective (hence
dominant) as (e, x) maps to x. The fibre π−1(π(g, x)) = π−1(x) = Gx ×{x} is equidimensional.
Semi-continuity of dimension gives that

Zn = {(g, x) ∈ Z : dimπ−1(x) ≥ n}

is closed. The image of Zn under π is Xn. Zn is union of fibers of π and π is an open map,
therefore, π(Zn) = Xn is closed.
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One can think of this alternatively as saying that the set

{x ∈ X|dimG · x ≤ n}

is closed.

In particular, applying this to the adjoint action of G on X = g, we recover that the set of
regular semisimple elements is open in g.

3.1.1 Bruhat decomposition

Next, let us denote by B the set of all Borel subalgebras of g. By definition B is a closed subvariety
of the Grassmanian of dimb-dimensional subspaces in g formed by solvable Lie subalgebras.
Therefore B is a projective variety.

Choosing a Borel subgroup B ⊂ G, we can write a map:

G/B → B

by sending [g]→ Ad(g)b. Since any two Borel subalgebras are conjugate and NG(B) = B, this
gives a bijection. One can show that this bijection is a G-equivariant isomorphism of algebraic
vvarieties.

Notice that the following are immediate from this: i) b ∈ B is a fiexed point of the adjoint action
of g ∈ G if and only if g ∈ B. ii) b ∈ B is the zero-point of the vector field on B associated to
x ∈ g if and only if x ∈ b.

We have seen that by Borel fixed point theorem any solvable algebraic group action on a projec-
tive variety has fixed points. We next recall the following result about C∗ actions on projective
varieties:
Theorem 3.7. (Bialynicki-Birula) Let C∗ act on a projective variety X with finitely many fixed
points W . For w ∈W , define the attracting set:

Xw = {x ∈ X|limt→0t · x = w}

The attracting sets give a decomposition

X = tw∈WXw

where Xw is a smooth locally closed algebraic subvariety. Furthermore, there are natural iso-
morphisms of algebraic varieties :

Xw
∼= Tw(Xw) ∼= T+

wX

which commute with the C∗ action.

Above, T+
wX is the positive part of the weight decomposition

TwX = T+
wX ⊕ T−wX

induced by the linearization of the C∗ action on X at w.
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Example 3.8. Consider the C∗ action on P2 given by t · [x : y : z] = [tx : t−1y : z]. This has 3
fixed points: [0 : 0 : 1], [1 : 0 : 0], [0 : 1 : 0]. Show that the Bialynicki-Birula decomposition gives
the standard cell decomposition of P2.

We will next apply B-B decomposition to obtain a cell decomposition of B. We will need the
following lemma:
Lemma 3.9. Let T ⊂ B be a maximal torus, then the map NG(T )/T → B given by x →
xbx−1 gives a bijection between the Weyl group and the Borel subalgebras containing the Cartan
subalgebra h = LieT . This implies that the fixed points of the T action on B are in one-to-one
correspondence with the Weyl group W = NG(T )/T .

Proof. Indeed, let b′ be a Borel subalgebra containing h. Choose x such that xbx−1 = b′.
Therefore, h ⊂ xhx−1. But, since Cartan subalgebras are maximal, this implies h = xhx−1

hence x ∈ NG(T ). This gives surjectivity. To see the injectivity suppose x ∈ NG(T ), such that
xbx−1 = b, then, since NG(B) = B, x ∈ B. But we also know that NB(T ) = T , hence x ∈ T .

To see the second part, since NG(B) = B, the set of fixed points of the adjoint action of T on
B correspond to Borel subalgebras that contain h, but we saw that these are parametrized by
the finite group NG(T )/T .

Now, choose a one-parameter subgroup C∗ ⊂ T which is in general position in the sense that
LieC∗ ⊂ h is spanned by a regular semisimple element h ∈ h. The action of ad(h) on b =
LieB can be diagonalized. Let us insist (for later use) that the eigenvalues of this action are
all non-negative. (We can arrange this easily, by modifying the one-parameter subgroup if
necessary.)

We let C∗ act on B by conjugation. The fixed points of this action are the Borel subalgebras b
containing h.

Claim: regular semisimple h ∈ b implies h ∈ b.

Indeed, since h is regular semisimple, it’s contained in a unique Cartan subalgebra h = Cg(h).
Hence, any Borel b containing h must contain h.

Therefore, the set of C∗ fixed points in B is equal to the set of T -fixed points in B.

But, we have seen that T -fixed points are in correspondence with the Weyl group elements.
Therefore, Bialynicki-Birula decomposition with respect to the C∗ action above gives us a cell
decomposition:

B =
⊔
w∈W

Bw

We next claim that under the identification of G/B with B the cells Bw correspond to B-orbits
on G/B, i.e we have a double coset decomposition

G =
⊔
w∈W

BwB
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such that Bw = BwB/B.

We first observe that under the adjoint action of h on g we obtain a decomposition:

g = h⊕ n+ ⊕ n−

where b = h⊕ n+ (as we arranged the weights on b to be positive).

Next, let us observe that the action of G on B decomposes the tangent space TwB into positive
and negative pieces according to the weights of action of C∗ ⊂ G:

TwB = T+
w B ⊕ T−w B

The tangent space to Bw is by definition T+
w B. Hence, we see that dim(Bw) = dimU , where

U ⊂ B is the unipotent subgroup of B.

We claim that indeed, U ·w ⊂ Bw. We need to check that an element uwB/B is in the attracting
set of w. Let’s view this point as the Borel subalgebra uw · b = Ad(uw)b ⊂ g. The action of
t ∈ C∗ is given by: tuw · b. It suffices to show that this goes to w · b as t → 0. Now, note that
since w is a fixed point for the action of t:

(tut−1t) · w = (tut−1) · w

On the other hand tut−1 → 1 ∈ U as t → 0 (as we have arranged that t action has positive
weights on b so also on n).

This proves U · w ⊂ Bw. Our next claim is U · w = Bw.

For this we view Bw with the U -action and use the fact that any orbit of a unipotent group
on an affine algebraic variety is closed. Therefore, U · w is closed subvariety in Bw. (Strictly
speaking, this requires the justification that U action on B preserves Bw but this is similar to
the argument given above in showing U · w ⊂ Bw).

But now U · w is an closed subvariety of Bw of the same dimension, therefore it has to be the
case that U · w = Bw.

Thus, since T fixes w, we have finally arrived at the Bruhat cell decomposition:

G/B =
⊔
w∈W

UwB/B =
⊔
w∈W

BwB/B

Let us just see that whenG = GL(n,C). This result is actually something you know well. namely
given an invertible matrix g, you can perform column operations in the form of multplying a
column by a scalar and subtracting from it a multiple of any column to its left. This amounts to
multiplying g with a upper triangular matrix b−1 ∈ B way, this gives the reduced echelon form,
so it looks like
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gb−1 =


∗ 1 0 0
∗ 0 ∗ 1
1 0 0 0
0 0 1 0


Each column ends with 1 and the part of the row to the right of any such 1 is zero.

We can then apply a permutation w to get to a upper triangular matrix:

u =


1 0 ∗ 0
0 1 ∗ ∗
0 0 1 0
0 0 0 1


Hence, gb−1 = uw, hence g = uwb.
Definition 3.10. Cw := BwB/B ⊂ G/B is called a Schubert cell, and its closure Xw := Cw is
called a Schubert variety.

Note that the isotropy group of U action is:

Uw := U ∩ wUw−1

In the case G = GL(n,C), these are the matrices aij such that aij = 0 if i < j and w−1(i) <
w−1(j). The complementary subspace in U is given by:

Uw := U ∩ wU−w−1

where U− is lower-triangular matrices in GL(n,C) case and Uw are the matrices aij such that
aij = 0 if i < j and w−1(i) > w−1(j).

In general, let w0 be the “longest element” in W , i.e., Bw0B/B is the dense orbit in G/B. Then
U− = w0Uw0.

Since Uw × Uw → U is an isomorphism of varieties, we get that Uw → Cw, g → gwB is an
isomorphims as well.

Hence, Cw is an affine space of dimension :

l(w) = #{(i, j) : 1 ≤ i < j ≤ n : w(i) > w(j)}

This number can be calculated as follows calculating the number of crossings in. For example,
for the permutation w = (1, 3, 4, 2), we have l(w) = 3.
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In general, l(w) is the length of the element w ∈ W as an element of the Coxeter group. (We
will see later that W is generated by reflections and l(w) is the least number of decomposition
into reflections).

There is also a partial order on W which encodes what is contained in what.
Definition 3.11. There is a partial order on W , so-called the Bruhat order, defined by declaring
v ≤ w if Xv ⊂ Xw for v, w ∈W .

For example, for Fl3 = SL3(C)/B, we have:

(321)

(231) (312)

(213) (132)

(123)

There is also a Bruhat decomposition for G/P where P is a parabolic subgroup (Recall this
means that P contains a Borel subgroup). Each such P determines a subgroup WP ⊂ W
(Recall W is generated by reflections, any WP is generated by a subset of theses reflections. In
fact, this gives a 1-1 correspondence between parabolic subgroups P and Weyl subgroups WP ).
Now, we have a generalized Bruhat cell decomposition:

G/P =
⊔

w∈WP

BwP/P

where WP = W/WP is the coset space. The cells are of dimension l(w) if w is chosen to be of
minimal length in its coset in W/WP . We then get a partial order on WP by the same principle
as above.

Exercise: Express the Grassmannian of 2-planes in C4 as SL(4, C)/P and describe the Bruhat
order on the corresponding Weyl group cosets WP .

It is instructive to consider the case Gln(Fq), where Fq is a field with q elements. Then the order
of G is

(qn − 1)(qn − q) . . . (qn − qn−1)

The order of the subgroup of upper triangular matrices is (q − 1)q
1
2
n(n−1) and Uw has order

ql(w). The Bruhat decomposition gives us the identity:

|G/B| =
∑
w∈Sn

|Uw|

31



i.e.
n∏
k=1

qk − 1

q − 1
=
∑
wSn

ql(w)

Next, we would like to give a hint of a Springer representation in a simple case. Namely, consider
the affine bundle:

G/T → G/B

This is a locally trivial fibration. The fibres are isomorphic to B/T ∼= U . But U is unipotent,
hence contractible. Therefore, G/T and G/B are homotopy equivalent. Therefore, we get an
isomorphism singular homology groups:

H∗(G/T ) ∼= H∗(B)

On the other hand, we can act on G/T by the Weyl group via:

w : gT → gTw = gwT

Since w normalizes T , this gives an action. Through the above isomorphism, we then get an
action of W on H∗(B). It turns out that this action does not depend on the choices of T and
B and so it is absolutely canonical. Furthermore, it turns out that this representation of W is
isomorphic to its regular representation. (We might see a proof of this later.)

Note that there is no canonical action of W on the space B, though one can construct an
noncanonical actions via expressing G/B as the quotient of the maximal compact subgroup K
modulo the maximal compact torus.

3.2 Springer diagram : The SLn case

We will first concentrate on G = SLn(C). Let us recall the basic fact that in this case the space
B can be identified with the variety F ln of full flags in Cn:
Proposition 3.12. The space B is identified naturally with the variety F ln of flags

{0} ⊂ V1 ⊂ V2 . . . Vn−1 ⊂ Vn = Cn

where Vi are subspace of Cn of dimension i.

Proof. We construct a map from F ln → B by assigning to a flag F the Borel subalgebra

bF = {x ∈ sln : x(Fi) ⊂ Fi ∀i}

If we let F = {0 ⊂ C1 ⊂ C2 . . . ⊂ Cn} be the standard flag then clearly bF is the Borel
subalgebra of the upper triangular matrices in sln. Now, any flag in F ln is conjugate to the
standard one by the action of SLn. On the other hand, the above map is equivariant with
respect to the SLn-action and NG(B) = B means that the indeed the map we defined is an
embedding of F ln → B. The surjetivity is ensured by Lie’s theorem, which says that any Borel
subalgebra preserves a flag.
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Next, let us consider the variety Cn/Sn of all unordered n-tuples of complex numbers. We next
show that this is isomorphic to n-dimensional vector space as an algebraic variety. Namely,
consider the space C[λ]n−1 of polynomials in λ of degree less than or equal to n. This is clearly
an n-dimensional complex vector space. Consider the map:

π : Cn → C[λ]n−1

(x1, . . . , xn)→ λn −
∏

(λ− xi)

Since the right hand side does not depend on the order of the xi, we get a well-defined map
Cn/Sn → C[λ]n−1 which is a bijection by the fundamental theorem of algebra!
Remark 3.13. Chevalley-Shephard-Todd theorem states that a finite group acting on a complex
vector space is a complex reflection group (i.e. generated by reflections along hyperplanes) if and
only if its ring of invariants is a polynomial ring

Next, consider any linear map x : Cn → Cn, we then have its characteristic polynomial:

det(λ1− x) ∈ C[λ]

We can then consider its roots as an unordered set {x1, . . . , xn}. If x ∈ sln, then we have
x1 + x2 + . . . xn = 0. Consider the hyperplane:

Cn−1 ∼= {(x1, . . . , xn) ∈ Cn : x1 + x2 + . . .+ xn = 0}

This hyperplane is clearly invariant the action of Sn which permutes the coordinates. Hence,
we have a well-defined map:

χ : sln → Cn−1/Sn

x→ {x1, . . . , xn}

sending a matrix x to its eigenvalues. This map is called the adjoint quotient map.

Next, we define the incidence variety :

g̃ = {(x, F ) ∈ sln × B : x(Fi) ⊂ Fi ∀i}

where F = (F0 = 0 ⊂ F1 ⊂ . . . ⊂ Fn = Cn) is a complete flag. In terms of the Borel subalgebras
description of B:

g̃ = {(x, b) ∈ sln × B : x ∈ b}

Hence, g̃ is clearly a rank dimB vector bundle over B.

We can construct a map:
χ̃ : g̃ → Cn−1

which should be though as assigning a pair (x, F ) ∈ g̃ the order n-tuple of eigenvalues of x.
Indeed, since x preservers Fi, it induces a linear map

x : Fi/Fi−1 → Fi/Fi−1
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We write xi for the eigenvalue of action of x on this 1-dimensional vector space. This gives a
map (x, F )→ (x1, . . . , xn) ∈ Cn. Since x ∈ sln, we must again have x1 + . . .+ xn = 0, hence we
get the desired map: χ̃ : g̃ → Cn−1 ∼= {(x1, . . . , xn) ∈ Cn : x1 + x2 + . . .+ xn = 0}.

Thus, we used the flag F to order the eigenvalues of x.

We now have π, χ, χ̃, the fourth map of the square is the Springer map:

µ : g̃→ g

(x, F )→ x

These all fit into the famous commutative diagram:

g̃ h

g h//W

χ̃

µ π

χ

where we wrote h = Cn−1 for a Cartan subalgebra of sln and h//W for Cn−1/Sn.

Note that the fiber µ−1(x) gets identified with the Springer fiber:

Bx = {F ∈ B : x(Fi) ⊂ Fi ∀i}

Here is the most important result of today:
Proposition 3.14. For x ∈ gsr (semisimple regular), Bx consists of n! points, and there is a
canonical Sn action on Bx making it a principal homogeneous Sn-space.

Proof. The set gsr of regular semisimple elements consists of linear maps x : Cn → Cn, which
have zero trace and n distinct eigenvalues. For x ∈ gsr, let us decompose :

Cn =
⊕
i

Vi, dim(Vi) = 1

where the Vi are the n distinct eigenspace of x. Note that any subspace fixed by x is a direct
sum of these eigen spaces. Now, the set Bx of all complete flags fixed by x are of the form:

Bx = {F = (Vi1 ⊂ Vi1 ⊕ Vi2 ⊂ . . .)}

so that there is a canonical bijection between Bx and the set of orderigns of the set {1, . . . , n}).
Hence, the set Bx consists of n! points. Moreover, we can define an action Sn on Bx as follows:
Given F ∈ Bx, choose the orderings of the eigenspaces such that Fi = V1⊕ . . .⊕Vi for all i (again
a flag gives us a way to order the eigenvalues). Then for any element w ∈ W ∼= Sn, define the
flag

w(F ) = Vw−1(1) ⊂ . . . ⊂ Vw−1(1) ⊕ . . . Vw−1(n)
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(The inverses is there so as to get an action from the right. )

Clearly, there were no choices made to define the action, hence it is canonical.

In the commutative diagram above, we now see that both g̃ and h have actions of the Weyl
group W , and χ̃ is an equivariant map with respect to these Sn actions.

We have now seen that general fibres of µ are discrete and carry the standard action of W .
We next want to go deeper in the stratification of g given by (co-)adjoint orbits and see the W
action on the cohomology of all he fibers of µ. Note that we have also seen the homology of the
zero-fiber µ−1(0) = B, the fiber above the deepest stratum, carries an action of W .

But first, we want to generalize the above picture to other semisimple Lie algebras.

3.3 Root systems

First, we need to clarify what we call the Weyl group W of a Lie algebra g. So far, we have
taken the lazy approach of picking a maximal torus T ⊂ G and calling NG(T )/T the Weyl
group. Even though, isomorphism type of this group does not depend on T (or G), its concrete
construction depends on these choices. We will now construct W in an abstract way starting
from g, which does not depend on any choices.

Indeed, the way to do this is to define W as the symmetry group of the root system associated
to g. Let us start somewhat more abstractly. Strictly speaking we will discuss slightly more
general situation than the case of finite-dimensional semisimple Lie algebras.
Definition 3.15. A generalized Cartan matrix is a matrix (aij)i,j∈I with integer entries and for
some finite set I, such that

• aii = 2 for all i ∈ I,

• aij ≤ 0 for all i 6= j,

• aij = 0 if and only if aji = 0.

A is called a symmetrizable Cartan matrix if it can be written as:

A = D × S

where D is diagonal and S is symmetric, where D and S are both square matrices with entries
in Q.

We will see that finite-dimensional semisimple Lie algebras have positive definite Cartan matrices
associated to them. For example, the Cartan matrix of sl5 is :

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2
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Definition 3.16. A Kac-Moody root datum consists of

• A generalized Cartan matrix A = (aij)i,j∈I ,

• Two finitely generated free Z-modules hZ and h∨Z, called coweight and weight lattices repec-
tively. These come with a perfect pairing

〈, 〉 : h∨Z × hZ → Z

• A pair of maps
I → h∨Z : i→ αi

I → hZ : i→ α∨i

such that
〈αi, α∨j 〉 = aij

The set of αi’s is called the (positive) simple roots and the set of α∨i ’s are called simple co-
roots.

The sublattice
R =

⊕
i

Zαi ⊂ h∨Z

is called the root lattice, and the sublattice

R∨ =
⊕
i

Zα∨i ⊂ hZ

is called the coroot lattice.

One usually considers the vector spaces hZ ⊗ R (or hZ ⊗ C) and regards hZ as a lattice in this
vector space (similarly for h∨Z).

Given two distinct positive roots αi, αj , we define the multiplicities: mij = 2, 3, 4, 6,∞ respec-
tively, if aijaji = 0, 1, 2, 3 or ≥ 4.

In the finite dimensional case, where one has a non-degenerate Killing form g× g→ C given by
(x, y) = Tr(adx · ady), roots and coroots can be identified and then by the cosine rule

4 cos2(φ) = 〈αi, α∨j 〉〈αj , α∨i 〉 = aijaji

measures the unique angle 0 < φ < π between the two simple roots αi, αj . Right-hand side is a
non-negative integer < 4, so in this case it can only be 0, 1, 2, 3. Hence, in the finite-dimensional
case mij can only be 2, 3, 4 or 6.
Definition 3.17. The Weyl grooup of root system is defined by generator si for i ∈ I and
relations

s2
i = 1 i ∈ I,

(sisj)
mij = 1 i, j ∈ I, i 6= j.
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For example, for sln, the angles between roots are 2π/3, hence mij = 3, and we get the braid
relations:

sisjsi = sjsisj i, j ∈ {1, . . . , n− 1}, i 6= j

It is an exercise to check that together with the relations s2
i , these define the symmetric group

Sn.

In general, we refer to the Weyl group defined via a root datum by the abstract Weyl group.

W acts on the weight and coweight lattices via simple reflections:

siλ = λ− 〈λ, α∨i 〉αi λ ∈ hZ

sih = h− 〈h, αi〉α∨i h ∈ h∨Z

These clearly preserve the roots R and coroots R∨. These two actions preserve the pairing, that
is.

〈w · λ,w · h〉 = 〈λ, h〉

Furthermore, the actions on weight and coweight lattices are faithful.

We now describe the way to obtain a root system starting from a Lie algebra g. We first need
a lemma:
Lemma 3.18. For any Borel subalgebra b, b′ ∈ B, there is a canonical isomorphism

b/[b, b] ∼= b′/[b′, b′]

Proof. Choose g ∈ G be such that b′ = gbg−1. This gives a map b → b′ sending x → gxg−1.
For a different choice g̃ with the property b′ = g̃bg̃−1, we get a new map from b→ b′. However,
these maps agree on the quotients b/[b, b] → b′/[b′, b′] as the adjoint action of B on b/[b, b] is
trivial and g̃−1g ∈ NG(B) = B . Therefore, we have canonical isomorphisms as required.

We identify all the quotient spaces b/[b, b] and call it the abstract Cartan subalgebra and denote
it by H. Note that H is not a subalgebra of g but for any Cartan subalgebra h ⊂ g and a Borel
subalgebra containing b ⊃ h, the composite h→ b→ b/[b, b] ∼= H is an isomorphism.

Now, choose a Cartan subalgebra h ⊂ g and decompose g into simultaneous eigenspaces for the
adjoint action of h on g. We get:

g = h⊕
⊕
λ 6={0}

gλ

where gλ = {x ∈ g : ad(h)x = λ(h)x , ∀h} are called the weight spaces for the adjoint action.
Each of them are 1-dimensional. Note that only finitely many

λ ∈ h∗

occur in the above decomposition as we assume g is finite dimensional. The span of the non-zero
weights λ is called the root lattice R ∈ h∗. Using the Killing form (x, y) = Tr(adx · ady), we
also obtain coroots

R∨ ∈ h
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On the other hand, we are missing a choice of a Z-basis for R and R∨. For this reason, pick a
Borel subalgebra b ⊃ h and consider weights of adjoint h-action on b (Note that since h ⊂ b,
the adjoint action of h preserves b - recall that isomorphism between B and G/B.). We take
the weights of this action to be the positive weights. Another way to say is this is that, once we
choose o Borel subalgebra b, then we get the adjoint action of h on b, we then get an induced
action on b/[b, b] and the weights of this action give us simple (positive) roots. Changing from
b to b′ comes with a canonical map b/[b, b] to b′/[b′, b′] and we get a conjugate choice of simple
roots. (Recall that since b and b′ both contain h, They are related by an element w ∈ W ,
via b′ = wbw, hence the choice different b’s correspond to action of the Weyl group on the
roots).

This specifies the set:
αi, i ∈ I

of (positive) simple roots. The duals of these with respect to the Killing form are called the
coroots α∨i .

Exercise: Use the filtraion b ⊃ [b, b] ⊃ [b, [b, b]] ⊃ . . . ⊃ {0}, to show that positive span of αi
generate the positive roots.

We also define the weight lattice hZ ∈ h∗ and coweight lattice h∨Z ∈ h as :

hZ = {h ∈ h : h(R) ∈ Z}
h∨Z = {α ∈ h∗ : α(R∨) ∈ Z}

Finally, the image of hZ and α∨i ’s under the composition h → b → b/[b, b] gives a lattice HZ
with a positive basis in the vector space H, and again by using the Killing form we get a dual
lattice H∨Z with basis αi in H∗.

We leave it as an exercise to check that this gives a root datum as defined above and importantly
it does not depend on the choice of h or b.

Let us give a concrete example to see how this works:

Consider sln(C). Let h be the diagonal matrices of trace 0. Then we have the Cartan decompo-
sition given as:

sln(C) = h⊕ Σi 6=jCEij
where Eij is the matrix with 1 in the i, j position and 0 elsewhere.

Indeed, for a diagonal matrix

x =


λ1 0 0 0
0 λ2 0 0
. . . . . . . . . . . .
0 0 0 λn


with λ1 + . . .+ λn = 0, we have:

[x,Eij ] = (λi − λj)Eij
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Therefore, the root lattice is spanned by

αij :


λ1 0 0 0
0 λ2 0 0
. . . . . . . . . . . .
0 0 0 λn

→ λi − λj

Thare n(n − 1) weights arising this way. Clearly, these are redundant. Now, if we choose the
Borel subalgebra b of upper triangular matrices, we get the positive basis:

αi : x→ λi − λi+1

The coweight lattice has a basis hi given by diagonal matrices with 1 on ith entry and −1 on
(i+ 1)th entry.

The Cartan matrix has entries:

aij = αi(hj) =


2 if i = j

−1 ifj = i± 1

0 otherwise

Finally, we end this discussion by mentioning the following important classification theorem:
Theorem 3.19. For any root system with a positive definite Cartan matrix, there exists a unique
up to isomorphism semisimple Lie algebra over C with the given root system.

It is an easy linear algebra exercise to show that there are only finitely many isomorphism types
of irreducible root systems with positive definite matrices. These are usually displayed via the
Dynkin diagrams:

An

Bn

Cn

Dn

E6

E7

E8
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F4

G2

We next have the following lemma in preparation for later.
Lemma 3.20. Given two Borel subalgebras b, b′ ⊂ g. There exists a Cartan subalgebra h ⊂ b∩b′

Proof. Let n = [b, b] and n′ = [b′, b′]. Let p = b ∩ b′ and c be a complementary subspace to
b + b′. Let h be Cartan subalgebra of b (hence of g). Let us write dim(h) = r, dim(n) = n and
dim(p) = p.

We have dimb = dimb′ = r + n and dimc⊥ = dim(b + b′) = 2(r + n) − p. On the other hand,
dim(c⊥ ∩ p) ≥ dimc⊥ + dimp− dimg = 2(r + n)− p+ p− (r + 2n) = r.

We also have n = b⊥ and n′ = b′⊥, and p∩n ⊂ n′. Hence, it follows that p∩n ⊂ n∩n′ = b⊥∩(b′)⊥.
Therefore,

c⊥ ∩ p ∩ n = {0}

We deduce that b = n ⊕ (c⊥ ∩ p) and b′ = n′ ⊕ (c⊥ ∩ p). Take z ∈ h ∩ grs. There exist y ∈ n
such that x = y + z ∈ c⊥ ∩ p. Hence adgx and adgz have the same characteristic polynomial.
so x is generic simultaneously for b, b′ and g. It follows that its centralizer Cg(x) is a Cartan
subalgebra in b ∩ b′.

Now, given two Borel subalgebras b, b′, find a Cartan subalgebra h ⊂ b∩ b′ which always exists
by the above lemma (though, it is not unique in general). Since b and b′ contain the same
Cartan subalgebra h, there is an element w ∈ W of the Weyl group associated to h ⊂ g, such
that wbw−1 = b′. Let us write w(b, b′) for the element of the abstract Weyl group that w maps
to under the isomorpshism of W with the abstract Weyl group element induced by

h→ b→ b/[b, b]

Exercise: The element w(b, b′) is independent of the choice of Cartan subalgebra h ⊂ b∩b′.

We say that two Borel subalgebras b and b′ are in the same relative position w(b, b′).
Proposition 3.21. Two pairs (b1, b

′
1) and (b2, b

′
2) are in the same relative position w in the

abstract Weyl group, if and only if the points (b1, b
′
1) and (b2, b

′
2) ∈ B × B belong the same

G-orbit under the diagonal G action on B×B. In other words, there exists a canonical bijeciton:

{G− orbits in B × B ∼= W}

where W is the abstract Weyl group.

Proof. This is essentially a reformulation of Bruhat decomposition. Choose a Borel subalgebra
b and let T be the maximal torus corresponding to h ⊂ b. Let w ∈WT , then by definition b and
wbw−1 are in relative position w ∈ W . Note also that if w(b1, b

′
1) = w(gb1g

−1, gb′1g
−1) since

if b1 and b′1 are related by a Cartan element w for the Cartan subalgebra h ⊂ g, then gb1g
−1

and gb′1g
−1 are related by the Cartan element gwg−1 for the Cartan subalgebra ghg−1 ⊂ g.
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Finally, to prove the claimed bijection, we must show that G-diagonal orbit on B×B contains a
single poing (b, wbw−1), w ∈ WT . Now, recall the Bruhat decomposition gives us the following
bijections:

WT
∼= B\G/B ∼= {B − orbits on B} ∼= {G− diagonal orbits on B × B}

Example: Let G = SL2(C) and W = {1, s}. Recall that in this case, we have B = CP 1, thus
B = CP 1 × CP 1. The two G-orbits are the diagonal in B × B and its complement.

We are now in a position to extend Springer’s commutative diagram to the case of general
semisimple Lie algebras.
Definition 3.22. Let g̃ = {(x, b) ∈ g × B : x ∈ b}, and let µ : g̃ → g and p : g̃ → B be
projections.

The fibre of π : g̃ → B over b is the set of elements of b. Hence π is a vector bundle over B of
rank equal to dim(B).

One way to understand g̃ is to fix a Borel B with Lie algebra b and consider the B-action G× b
given by b · (g, x) → (gb−1, bxb−1), the orbit space of this action is the associated vector space
to the principal B-space G, and the adjoint representation of B on b, so we write it as G×B b.
It is a simple exercise to see:
Proposition 3.23. The projection p : g̃ → B makes g̃ a G-equivariant vector bundle over
B = G/B with fibre b, and there is a G-equivariant isomorphism between g̃ and G×B b.

As for the map µ : g̃ → g, all we observe at the moment is that it is a proper map, as it is the
restriction of the first projection g×B → g which is proper. The fibers µ−1(x) = Bx consists of
all Borel subalgebras that contain x. When x = 0, this is all of B and when x ∈ gsr then Bx is
discrete and it contains |W | many points.

We next introduce the analogue of χ̃ : g̃→ H. This is, by definition:

g̃→ H

(x, b)→ x+ [b, b] ∈ b/[b, b]

Exercise: Show that for each x ∈ gsr, there is a canonical free W -action on µ−1(x) making the
projection g̃sr → gsr a principal W -bundle. (Here is how to define the W -action: Given x ∈ gsr,
let b ∈ µ−1(x). The centralizer Cg(x) is a Cartan subalgebra h ⊂ b. Given w ∈ W , let w(b) be
the unique Borel subalgebra containing h that is relative position w with respect to b.)

We will next discuss Chevalley Restriction Theorem, which says:
Theorem 3.24. For any Cartan subalgebra h ⊂ g the restriction map gives a canonical graded
algebra isomorphism:

C[g]G ∼= C[h]W

.
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Proof. Observe that there is an obvious restriction map C[g]G → C[h]W . Let us first see that
this map is an injective map. Indeed, recall that any x ∈ gsr is G-conjugate to an element of h.
If P ∈ C[g]G such that its restriction to h is identically zero, it follows that P is identically zero
on gsr. But, gsr ⊂ g is dense, therefore P has to be identically zero.

Next, we will prove surjectivity. Let P ∈ C[h] which is W -invariant, we need to find a G-invariant
polynomial R in C[g] whose restriction to h is P . Since the isomorphism h → b/[b, b] = H
is a canonical isomorphism that intertwines the W -actions, we can view P as a W -invariant
polynomial on H.

Now, let P̃ be the composition P ◦ χ̃. It is clear from the description of g̃ as G×B b that P̃ is a
G-invariant polynomial.

Next, restrict P̃ to the open dense set g̃sr = µ−1(gsr). Note that χ̃ : g̃sr → h commutes with
the W -actions and since P is W -invariant, it follows that P̃ is W -invariant.

Now, we have seen that µ : g̃sr → gsr is a Galois covering. Therefore, by a general result about
Galois coverings, µ∗ gives an identification at the level of function fields:

C(g̃sr)W ∼= C(gsr)

Hence, we obtain a rational function R ∈ C(gsr) as the image of P under this identification,
such that P̃ = R ◦ µ.

Finally, we note that since P̃ is regular and µ is proper, it follows that in fact R is a polynomial
(has no poles).

Remark 3.25. Another theorem of Chevalley says that C[h]W is a free polynomial algebra.
Hence the algebraic variety Spec(C[h]W ) = h/W is isomorphic to a vector space of dimension
equal to rkg as an algebraic variety.

Given a pair h ⊂ b, consider the diagram:

g← h→ b→ b/[b, b] = H

These induce isomorphisms C[g]G → C[h]W ← C[H]W . Furthermore, one can chekc that the
isomorphism:

C[g]G ∼= C[H]W

does not depend on the choice of (h, b). Therefore, we get a canonical C-algebra embed-
ding:

C[H]W → C[g]

and we write
χ : g→ H/W

for the corresponding map. Therefore, we have finally completed the description of all the maps
in the commutatitive diagram:
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g̃ H

g H/W

χ̃

µ π

χ

Once again, I would like to emphasize that the maps or spaces in this diagram are canonical,
does not depend on the choice of a h or a b.

Exercise: Check commutative of the diagram to make sure you understand all the maps.
Corollary 3.26. Let b be a Borel subalgebra with nilradical [b, b] = n. Then, for any G-invariant
polynomial P on g and any x ∈ b the restriction P|x+n is constant.

Proof. Let x ∈ b and y = x+ n for some n ∈ n. Observe that x̃ = (x, b) and ỹ = (y, b) map to
the same element in b/[b, b] under ˜chi hence, the commutativity of the diagram above implies
the result.

Another interpretation of this result can be given in view of the following:
Proposition 3.27. Let x ∈ b be a semisimple regular element. Then x + n = B · x is a single
B-orbit.

Proof. First, observe that the affine space x + n is B-stable. Indeed, since B is connected, it
suffices to show that the tangent space n is invariant under the linearization of the B-action.
This means, we need to check:

[b, n] ⊂ n and [b, x] ⊂ n

The first is clear, since n = [b, b] is an ideal. Furthermore, since b/n is an abelian Lie algebra,
for any x ∈ b, [b, x] = 0 modulo n, hence [b, x] ∈ n.

Next, let U ⊂ B be the unipotent radical. Since x + n is B-stable, it is also U -stable. Now,
note that [n, x] = n since x is regular semisimple (which implies Cg(x) is a Cartan subalgebra,
hence Cg(x)∩ n = {0}. Therefore, the linearization of the action of U on x+ n is a submersion.
Then, the implicit function theorem implies that the U -orbit of x is open in x+n. On the other
hand, any orbit of an action of a unipotent group on an affine variety is closed, thus it follows
that U · x = x+ n, hence B · x = U · x = x+ n.

The previous corollary can be obtained from this proposition. Namely, if P is a G-invariant
polynomial on g. Then P is constant on any B-orbit. In particular, it is constant on x + n
where x is regular semisimple. By continuity, it is constant on x+ n for any x ∈ b since regular
semisimple elements are dense in b.
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3.4 Nilpotent cone

Recall from the introduction that we have N := {x ∈ g : x nilpotent }. Using the projection
µ : g̃→ g, we also define;

Ñ := µ−1(N ) = {(x, b) ∈ N × B|x ∈ b}

Now, if b ∈ B and x ∈ b such that ad(x) is nilpotent, that means that x has no Cartan
component in a decomposition b = h ⊕ n where n = [b, b] is the nilradical. Hence, an element
of b is nilpotent if and only if it belongs to n. Thus Ñ is a vector bundle over B with fibre
over b given by [b, b]. Furthermore, since any two Borel subalgebras (hence their nilradicals) are
G-conjugate, if we fix a Borel subgroup B with LieB = b, then we get a G-equivariant vector
bundle isomorphism:

G×B n→ Ñ
(g, x)→ (Ad(g) · x,Ad(g) · b)

In particular, observe that Ñ is a smooth variety, while N is always singular at the origin.

In fact, as we saw before, under the isomorphism g∗ ∼= g given by an invariant pairing, we have
that n = [b, b] gets identified with b⊥. Moreover, G×B b⊥ is G-equivariantly isomorphic to the
cotangtent bundle T ∗(G/B). Furthemore, we have also seen that the G-action on T ∗(G/B) is
always Hamiltonian, and the moment map is given by:

µ :∼= G×B b⊥ → g∗

(g, z)→ Ad∗(g) · z

or equivalently using the identifications given by g∗ ∼= g, we can view this as a map

µ : G×B n→ g

(g, x)→ Ad(g) · x.

Hence, innded, the moment map takes values on N and as a map

µ : Ñ → N

is just the restriction of µ : g̃→ g to Ñ .
Definition 3.28. The map µ : T ∗B → N is called the Springer resolution.

We note that the map µ is surjective, since any nilpotent element of g is known to be contained
in a nilradical n of some b. Thus, we now have constructed the diagram that was mentioned in
the introduction:

Ñ g̃ H

N g H/W

µ µ

χ̃

π

χ
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Let us write C[g]G+ to be the G-invariant polynomials on g without constant term. The following
result of Kostant gives intrinsic definition of what it means to be for an element in g (resp. g∗)
is nilpotent without referring to the adjoint representation (resp. to an invariant pairing).
Proposition 3.29. An element x ∈ g is nilpotent if and only if for every P ∈ C[g]G+, we have
P (x) = 0. In other words, N = χ−1(0).

Proof. Since we have C[H]W ∼= C[g]G, proving the isomorphism amounts to showing that N =
χ−1(0). Now, let x ∈ N , and choose a point (x, b) ∈ µ−1(x). Since x is nilpotent, we have
x ∈ [b, b], it follows, by definition, that χ̃(x, b) = 0 ∈ H. By the commutativity of the diagram,
we conclude that χ(x) = 0.

Conversely, if χ(x) = 0, then choose (x, b) ∈ µ−1(x). We have, π(χ̃)(x, b) = χ(x) = 0. Hence,
(x, b) ∈ χ̃−1(0) (since 0 is a fixed point of the W action on H), but that means x ∈ n = [b, b].

Corollary 3.30. N is an irreducible variety of dimention 2dim n.

Proof. Since T ∗B is smooth and connected (hence irreducible), and map µ : T ∗B → N is
surjetive, the irreducibility of N is clear. Furthermore, we have the inequality:

dimN ≤ dimT ∗B = 2dim n

On the other hand, N is the zero-fiber of the map χ : g → h/W . Therefore, its dimension
satisfies the inequality:

dimN ≥ dim g− dim h = 2dim n

Hence, we conclude that dimN = 2dim n.

We next state the following proposition without proof (we will give the proof later on over char
0):
Proposition 3.31. There are only finitely many nilpotent orbits in g.

Note that in the case g = sln, this is just the Jordan normal form theorem.
Proposition 3.32. The regular nilpotent elements form a single Zariski-dense orbit in N .

Proof. Since N is irreducible and there are only finitely many orbits, it contains a unique
open-dense orbit O. Then, dimN = dimG − dimCG(x) for x ∈ O. Hence, it follows that
dimCG(x) = rkg, which means, by definition, that x is regular.

We next want to show that µ : T ∗(B)→ N is 1-1 over the orbit O of regular nilpotent elements.
We will need a little bit of preparation for this.

Let b = h ⊕ n is a Borel subalgebra, and α1, . . . , αr be the set of positive simple roots and let
ᾱi ∈ n̄ = n/[n, n] be their projection to the Cartan subalgebra h. We define:

nreg := {x ∈ n : x̄ =
∑

aiᾱi for ai ∈ C∗}

Clearly nreg is a Zariski dense open subset of n.
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Proposition 3.33. nreg is a single B-orbit consisting of regular nilpotent elements in g.

Proof. Let x ∈ n be a regular nilpotent element. Since x ∈ n, we have [x, n] ⊂ [n, n] hence
x + [n, n] is stable under the adjoint U -action (as U is connected; this argument is as before),
where U is the unipotent subgroup of G corresponding to n. Since x is also regular, we have

Ad(U) · x ≥ dim n− rk g = dim [n, n]

Hence, the U -orbit of x is open in x+[n, n] but U is a unipotent group acting on the affine space
x+ [n, n] hence its orbits are closed. Therefore, we conclude that x+ [n, n] is a single U -orbit.

Now, consider the projection n→ n/[n, n] , this is a T -equivariant map with respect to the natural
adjoint action T -actions. Furthermore, the image of nreg under this quotient is dense. Therefore,
in particular nreg contains a regular nilpotent element x ∈ n and hence x+ [n, n] ⊂ nreg. As we
have seen x + [n, n] is a single U -orbit. Furthermore, any other element of nreg is obtaines by
T · (x+ [n, n]), so it follows that nreg = B · x.

Corollary 3.34. The element n = α1 + α2 + . . .+ αr is a regular nilpotent element in g.

Proof. Since n ∈ nreg it follows from the above proposition that n is regular.

Proposition 3.35. Any regular nilpotent element is contained in a unique Borel subalgebra.

Proof. We have seen that dimN = 2dim n and since we have dimÑ = dimT ∗B = 2dim n, the
map µ : T ∗B → N is a surjective map of irreducible varieties of the same dimension. Therefore,
it follows that generic fibres are 0-dimensional.

Now, from the previous proposition, all regular nilpotents form a single dense conjugacy class in
N . Since µ : T ∗B → N is a G-equivariant map, it suffices to prove the result for a single regular
nilpotent element. Note that in particular, we know that the fibre of µ over a regular nilpotent
element has to be discrete but we are aiming to show that the fibre consists of a unique element.

By picking a b and n = [b, b], we can find a regular nilpotent element n = α1 + . . . + αr as
above. Thus, it suffices to show that µ−1(n) = Bn is a unique element. Let h ∈ h be a regular
semisimple element such that −ad(h) · n = [h, n] = n. Note that this is easy to arrange, since
n is the sum of simple roots αi so there is a basis {hi} of the coweight lattice in h such that
[hi, αj ] = δij . Now, the equation [h, n] = n implies that the Springer fibre Bn ⊂ B of Borel
subalgebras containing n is h-stable. Consider the corresponding C∗ action on B induced by h.
We then have the Bialynicki-Birula decomposition with respect to this C∗-action as in the proof
of the Bruhat decomposition. The fixed points of this C∗ action are in correspondence with the
Weyl group elements, so there are |W | Borel subalgebras b ⊂ B that are fixed. Namely, the
Borel algebras that contain h. Among these only one of them contains n. This follows because,
any borel subalgebra containing h contains the Cartan subalgebra Cg(h), if two borel subalgebra
contain Cg(h), they are related by the action of the Weyl group NG(T )/T . But the Weyl group
reflects the simple roots, hence, the stabilizer of the element n under the action of the Weyl
group is just the identity element.
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It follows from this proposition that µ : T ∗(B) → N is an isomorphism over the Zariski open
part of N formed by regular nilpotent elements. Thus µ is a resolution of singularities of N ,
since T ∗(B) is a smooth variety.

3.5 Steinberg variety

We will now discuss an important variety in geometric representation theory. This will give rise
to “correspondences” when we later construct representations of the Weyl group.

Recall that we have the Springer resolution µ : Ñ → N . We write:

Z = Ñ ×N Ñ = {(x, b), (x′, b) ∈ Ñ × Ñ : x = x′}

or equivalently, we have an isomorphism:

Z = {(x, b, b′) ∈ N × B × B : x ∈ b ∩ b′}

Therefore, there is a natural map i : Z → B × B. Now, recall that G-diagonal orbits on B × B
are canonically parametrized by the elements of the abstract Weyl group. We have:

B × B =
⊔
w∈W

Yw =
⊔
w∈W

G · (B,wB)

where we have written Yw for the orbit corresponding to the element w in the abstract Weyl
group.

Let Zw := i−1(Yw) ⊂ Z ⊂ T ∗(B)× T ∗(B). Now, we have an isomorphism:

T ∗(B)× T ∗(B) ∼= T ∗(B × B)

given by
((x1, b1), (x2, b2))→ ((x1,−x2), (b1, b2))

where we have inserted a sign so that the standard symplectic form on T ∗(B × B) corresponds
under the isomorphism to p∗1ω1 − p∗2ω2, where ω1 and ω2 are the standard symplectic forms on
the first and second factor of T ∗B × T ∗B.

We then have the following proposition:
Proposition 3.36. The Steinberg variety Z is the union of the conormal bundles to all G-
orbits in B × B. Indeed, Zw is the cornomal bundle to Yw, and we have Z = twT ∗Yw(B × B).
Furthermore, every irreducible component of Z is the closure of T ∗Yw(B × B).

Proof. Recall that we have the identification T ∗B = G ×B b⊥. Hence, an element of T ∗B can
be written as (x, b) such that x ∈ b⊥.

The fibre of the the conormal bundle to Yw at a point α = (b1, b2) ∈ B × B consists of

((x1, b1), (x2, b2)) ∈ g∗ × B × g∗ × B
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such that x1 ∈ b⊥1 and x2 ∈ b⊥2 and in addition (x1, x2) annihilates the tangent space TαYw ∼=
g/b1 × g/b2. But, this latter condition is equivalent to

〈x1, u〉+ 〈x2, u〉 = 0 for all u ∈ g

which implies x1 + x2 = 0. Hence the union of conormal bundles to Yw get identifies with
Z. Now, the closures of T ∗Yw(B × B) are irreducible because the conormal bundles themselves
are irreducible, Furthermore, they are of the same dimension since they are Lagrangians in
T ∗(B × B).

The following is the key theorem of this section. Fix a Borel subalgebra b ⊂ g and let n = [b, b]
be the nilradical.
Theorem 3.37. Let O be a coadjoint orbit in g∗. Let x ∈ O be such that x|n = 0. Then

O ∩ (x + b⊥) is a (possibly singular) Lagrangian subvariety in O with respect to the natural
symplectic structure on coadjoint orbits.

Note that under an identification of g with g∗ via an invariant form, we have b⊥ = n ⊂ g. The
theorem can then be stated as:

For any adjoint orbit O ⊂ g and any x ∈ O∩ b, the set O∩ (x+ n) is a Lagrangian subvariety in
O when it is equipped with the symplectic form coming from the identification with a coadjoint
orbit.

We will prove the harder (and interesting) case, which corresponds to when x ∈ n, and leave the
rest as an exercise for the reader.

Proof. Let p : Z → N be the projection map. Given an adjoint orbit O ⊂ N , let us put
Zo = µ−1(O). Thus, Zo is the set of all triples (x, b, b′) ∈ Z such that x ∈ O.

Claim: dim(O ∩ n) ≤ 1/2dimO.

Let n = dimn = dimB. Then we have dimT ∗B = dimZ = 2n.

We have a fibration Zo → O with fiber over x ∈ O given by Bx × Bx. Note that this fibre is in
general singular. Therefore, we have:

dimO + 2dimBx ≤ dimZo

Since dimZo ≤ dimZ = 2n, we conclude that:

1

2
dimO + dimBx ≤ n

Now, given x ∈ O and x ∈ n ⊂ b, we let S = {g ∈ G : gxg−1 ∈ b} = {g ∈ G|gbg−1 ∈ Bx}.
Clearly, S is stable under the multiplication by B on the left and the map Bg → g−1bg gives
an isomorphism:

B\S ∼= Bx
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Therefore, we get the inequality:

dimS − dimB +
1

2
dimO ≤ n

On the other hand, O ∩ n is equal to the set of all gxg−1 such that g ∈ S. Therefore, we have
the isomorphism:

S/CG(x) ∼= O ∩ n

given by g · CG(x)→ gxg−1, which, together with the above inequality, gives:

dim(O ∩ n) +
1

2
dim(O) ≤ n+ dimB − dimCG(x)

But n+ dimB − dimCG(x) = dimG− dimCG(x) = dimO, hence we get:

dim(O ∩ n) ≤ 1

2
dim(O)

as required.

We will next show that O∩n is a coisotropic subvariety in O and this will then imply the result.

To that end, view O as a symplectic manfiold with a Hamiltonian B-action. In particular, we
have a moment map:

µ : O→ b∗

But this factors through O → g∗ → b∗, where the first map is the moment map obtianed by
considering O as a Hamiltonian G-variety and the second map is the dual of the inclusion b→ g.
Let us write this as ι : g∗ → b∗.

Now, ι∗(0) = b⊥ = n, hence we conclude that µ−1(0) = O∩n. Now 0 is a coadjoint B-orbit in b∗,
hence by the main theoem of the first part of the course, we conclude that µ−1(0) is coisotropic.

Example 3.38. Let G = SLn(C) and O ⊂ sln the variety of rank 1 nilpotent matrices. Here is
a concrete way of describing this variety. Let v ∈ V ∼= Cn and w ∈ V ∗, then consider the rank
1 map x : Cn → Cn given by:

u→ (v ⊗ w)(u) = w(u) · v

Clearly, any rank 1 linear map can be written in this way. The nilpotency condition on x amounts
to w(v) = trace(x) = 0. Thus, we have a surjection from the set

{v ⊗ w, v ∈ V,w ∈ V ∗, w(v) = 0}

to the variety O. This surjection is not injective since for any λ ∈ C∗, we have that λv ⊗ 1
λw

gives rise to the same rank 1 map as v ⊗ w. But this is all the ambiguity, in particular:

dimO = (2n− 1)− 1 = 2n− 2
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In coordinates, we cna write

O = {x = (aij)|aij = αiβj ,
∑

αiβi = 0

Now let n be the Lie algebra of upper triangular nilpotent matrices. Consider O ∩ n. This has
n− 1 irreducible components. Indeed, in order for elements of O to be in n, one must have:

α = (α1, α2, . . . , αk, 0 , 0 , 0 , . . . 0)

β = (0 , 0, . . . , 0, βk+1, βk+2, . . . , βn)

The different irreducible components correspond to different values of k = 1, . . . n− 1.

Notice that the dimension of each of these components is equal to n− 1 which is half of dim(O
as it should be for Lagrangian.

We now consider the opposite case where we assume that O is the adjointG orbit of a semisimpler
regular elemetn x ∈ g. Let b be a Borel subalgebra containing x and n be its nilradical and B
the Borel subgroup with Lie(B) = b. The Theorem 3.37 claim that (x+ n) ∩O is a Lagrangian
subvariety in O. Indeed, we have seen before that in Prop. 3.27 that :

x+ n = B · x ⊂ O

is a single B-orbit. Indeed, we can compute the dimension of x+ n as:

dim(x+ n) = dim(n) = 1/2dim(G/T ) =
1

2
dimO

So indeed x+ n is a B-stable half-dimensional variety of O. Since we can also express it as the
preimage of the corresponding coadjoint B-orbit in b∗, we conclude indeed that
Lemma 3.39. For a regular semisimple element x ∈ b, the affine linear space x+n is a B-stable
Lagrangrian subvariety of adjoint orbit O through x.

Let us consider the example of sl2(C) as usual.
Example 3.40. As we have seen before, semisimple adjoint orbits are the quadrics determined
by the equations:

a2 + bc = λ for λ 6= 0

As is well known smooth quadrics have two rulings. We can see them here. Indeed let x ∈ sl2(C)
be a semi-simple regular element, let h = Cg(x) be the Cartan subalgebra containing x. Now,
any Borel subalgebra containing x, contains h and they are related by the action of the Weyl
group. In our case, we get two Borel subalgebras b and bop containing x. Then, the adjoint
orbit through x contains the Lagrangians x+ n and x+ nop. The two rulings of the adjoint orbit
through x can be given as the image under µ of G×B (x+ n) and G×Bop (x+ nop).

Let us generalize and at the same time explain the previous example in more detail. Let x be
a regular semisimple element in g. The affine space x + n is determined by the choice of an
element x̃ = (x, b) in the fibre µ−1(x). Since x is regular semismiple, there are #W different
Lagrangian affine linear spaces going through each point of the adjoint orbit O through x. In
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fact, each of these choices can be made compatibly in a way to exhibit O as a Lagrangian
fibration in #W different ways. Indeed, let Õ = µ−1(O). Then µ : Õ→ O is a finite cover. On
the other hande, O can be identified with G/T which has trivial fundamental group. Indeed, we
may assume that G is simply connected as passing to a simply connected cover does not change
its Lie algebra and the conjugacy classes in g. Then consider the long exact sequence of the
fibration T → G→ G/T . This gives:

π1(G)→ π1(G/T )→ π0(T )→ π0(G)→ π0(G/T )→ 1

It follows that π1(G/T ) = 0.

Therefore, Õ is a disjoint union of #W connected components, each isomorphic to O by µ.
On the other hand recall that we had the rprojection p : g̃ → B was a vector bundle which
was identified with the orbit space G×B b after choosing a Borel. Restriction of p to Õ makes
each connected component of Õ into a G-equivariant fibration over B with fiber x + n and the
fibration takes the form

p : G×B (x+ n)→ G/B ∼= B

These different fibrations can be transferred to O via the isomorphism µ.

We next turn our attention to nilpotent cone. Recall that the moment map µ : Ñ → N and the
Steinberg variety Z = Ñ ×N Ñ . Given an adjoint orbit O ⊂ N , we let Zo = µ−1(O), the set of
all triples (x, b, b′) such that x ∈ b ∩ b′ and x ∈ O.
Proposition 3.41. For any orbit O ⊂ N , each irreducible component of Zo has the same
dimension equal to:

2dim(G/B) = 2dimn

Proof. Indeed, letting Õ = µ−1(O), we have Zo = Õ×O Õ. The projection p : Ñ = G×B n →
G/B restricted to Õ gives an isomoprhism Õ = G×B (O ∩ n) which fibers over G/B with fibre
O ∩ n. But, we have seen that O ∩ n is a Lagrangian subvariety of O, in particular, each of its
irreducible components have dimension equal to dim(O)/2. Hence, Zo has dimension equal to :

2dim(Õ)− dim(O) = 2dim(G/B)

We have arrived at an interesting situation. Indeed, we have

Z = tOZo

where the union is over all nilpotent conjugacy classes. Furthermore, each Zo is locally closed
of pure dimension equal to 2dimn. Therefore, the closure of an irreducible component of Zo is
an irreducible component of Z. But, we have seen before that the irreducible components of Z
are given by closures of the conormal bundles T ∗Yw(B × B) where for w ∈ W , Yw is an orbit of
diagonal action of G on B × B. Therefore, we conclude:
Corollary 3.42. The number of nilpotent conjugacy classes in g is finite.

Finally, we have the following:
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Corollary 3.43. All irreducible compnents of a Springer fibre Bx have the same dimension,
dimBx, and

1

2
dimO + dimBx = dimB

Proof. For x ∈ O, we can identify the adjoint orbit through x with G/CG(x) where CG(x) is
the centralizer of x. Now, CG(x) act on the borel subalgebras Bx containing x, and we have a
G-equivariant isomoprhism: Õ = G×CG(x) Bx. From this, we deduce that :

Zo = Õ×O Õ = G×CG(x) (Bx × Bx)

Therefore, irreducible components of Zo are of the form G ×CG(x) (B1 × B2) where B1 and B2

are irreducible components of Bx. Thus, for any such B1 and B2, we have:

dimO + dimB1 + dimB2 = 2dimB

Taking B1 = B2 gives the desired result.

4 Borel-Moore homology

Below, we always work over the field C.

Let M be a not necessarily compact, smooth (real) manifold. As for any topological space,
we have the singular homology H∗(M) and cohomology H∗(M). We also have the compactly
supported cohomology H∗c (M). For an oriented manifold M of dimension m, Poincaré duality
statement is an isomorphism:

H∗c (M) ∼= Hm−∗(M)

given by the cap product with the fundamental class [M ]. The usual Poincaré duality state-
ment for a compact manifold follows because of the isomorphism H∗(M) and H∗c (M) if M is
compact.

Staying in the non-compact setting, we can ask what is the Poincaré dual of H∗(M)? The

answer is the Borel-Moore homology H lf
∗ (M) where the super-script lf refers to locally-finite

chains.

For a topological space M , we define the complex C lf∗ (M) of infinite singular chains:

∞∑
i=0

aiσi

where the σi are singular chains of the same dimension and where any compact set K ⊂M in-
tersects the support of only finitely many of the σi with ai non-zero. The Borel-Moore homology
H lf
∗ (M) is defined to be the homology of C lf∗ (M) under the standard boundary map.

Of course, if M is compact, by definition, H lf
∗ (M) coincides with H∗(M). But, this is no longer

true for non-compact spaces.
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For example, if M = R, we can add up all the intervals [i, i+ 1]i∈Z to get a locally finite chain

with no boundary. This represents the fundamental class of M in H lf
1 (M).

An equivalent definition of Borel-Moore homology is given by considering the one-point com-
pactification M ∪ {∞}, then we have :

H lf
∗ (M) = H∗(M ∪∞,∞)

From this, it is immediate that there is a proper push-forward map on Borel-Moore homology.
That is, if f : M → N is a proper map (i.e. preimage of a compact set is compact), then there is

an induced map f∗ : H lf
∗ (M)→ H lf

∗ (N). (f being proper ensures that the map from M ∪ {∞}
to N ∪ {∞} induced by f sending ∞ to ∞ is continuous.)

If M is a smooth but not necessarily compact m-dimensional manifold, then we have the Poincaré
duality isomorphism (depending on an orientation):

H∗(M) ∼= H lf
m−∗(M)

To state certain general properties of Borel-Moore homology (such as Poincaré duality), we need
to restrict to a “reasonable” class of spaces. However, manifolds are too restrictive of a class, as
most of Springer fibers are singular algebraic varieties.

We will insist that M is locally compact, has the homotopy type of a finite CW -complex, and
admits a closed embedding to a C∞ manifold. (I am not sure how much of these assumptions are
necessary but they are certainly mild assumptions for us and all the real or complex algebraic
varieties satisfy these assumptions).

Now if X is a closed subset of an m-dimensional manifold M , then we have the following version
of Poincaré duality:

H lf
∗ (X) = Hm−∗(M,M\X)

Most of the properties of Borel-Moore homology can be established by using this and appealing
to the standard properties of cohomology.

In particular, if F is closed in X, then we have Mayer-Vietoris type long exact sequence:

· · · → H lf
p (F )→ H lf

p (X)→ H lf
p (X\F )→ H lf

p−1(F )→ · · ·

But, for us, most importantly, every complex algebraic variety X (not necessarily smooth or
compact) has a fundamental class [X]. Indeed, first we note that any smooth oriented manifold
X has a well-defined fundamental class in Borel-Moore homology [X] ∈ Hm(X) where m =
dimR(X).

For a complex algebraic variety X, if X is irreducible of real dimension m, then [X] is the unique

class in H lf
m (X) that restricts to the fundamental class of the non-singular part Xreg of X. Being

a smooth complex algebraic variety Xreg has a canonical orientation and hence a fundamental
class [Xreg] ∈ H lf

m (Xreg). Since the real codimension of X\Xreg is at least 2, one shows that
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Hk(X\Xreg) = 0 for any k > m − 2 from which one concludes using the Mayer-Vietoris long
exact sequence above that:

H lf
m (X)→ H lf

m (Xreg)

is an isomorphism. If X is not irreducible, one defines [X] as a non-homogenous class equal to∑
[Xi] where Xi are irreducible components of [X].

For a complex algebraic variety, the top Borel-Moore homology is particularly easy to compute.
Namely, we have:
Proposition 4.1. Let X be a complex variety of complex dimension n and let X1, . . . , Xm be
the n-dimensional irreducible components of X. Then the fundamental classes [X1], . . . , [Xm]

form a basis for the vector space H lf
top(X) = H2n(X).

Let M be a manifold and Z1, Z2 be closed subsets in M . Then, there is an intersection product
on Borel-Moore homology that takes the form:

∩ : H lf
i (Z1)×H lf

j (Z2)→ H lf
i+j−m(Z1 ∩ Z2)

We can define this using the product structure on cohomology:

Hm−i(M,M\Z1)⊗Hm−j(M,M\Z2)→ H2m−i−j(M,M\(Z1 ∪ Z2))

Note that if Z1 and Z2 are intersecting transversely, then the product satisfies:

[Z1] ∩ [Z2] = [Z1 ∩ Z2]

There is a Künneth isomorphism:

� : H lf
i (Z1)⊗H lf

j (Z2)→ H lf
i+j(Z1 × Z2)

The proof of this can be given just like the usual Kı̈nneth isomorphism for the (relative) singular
homology.

Using this isomorphism, for a trivial fibration p : B × F → B with F smooth oriented of real
dimension d, we may define the smooth pullback p∗ : H lf

∗ (B)→ H lf
∗+d(B) given by p(c) = c�[F ],

where [F ] is the fundamental class of F . It is possible to define this map more generally on any
locally trivial fibration with oriented fibers, but we mention only that it restricts to the map we
have described over any open set where the fibration is trivial.

Convolution product:

For us the most important property of the Borel-Moore homology is that it has a convolution
product.

First recall the following toy example of a convolution. Let C(M) denote a finite-dimensional
vector space of C valued functions on M . Given finite sets M1,M2,M3. We define a convolution
product:

C(M1 ×M2)⊗ C(M2 ×M3)→ C(M1 ×M3)
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via the formula:

f12 ∗ f23(m1,m3) =
∑

m2∈M2

f12(m1,m2)f23(m2,m3)

Writing di for the cardinality of Mi, we may naturally identify C(Mi×Mj) with the vector space
of di × dj matrices. Then the formula given above is just the matrix multiplication.

Another famous example of convolution product appears in deRham cohomology. For a manifold
M , recall that Ω•(M) denotes the graded vector space of C∞ differential forms. Let M1,M2,M3

be smooth compact manifolds and pij : M1 × M2 × M3 → Mi × Mj be projection maps to
(i, j)-factor. Let d = dimM2, then we have a convolution product:

Ωi(M1 ×M2)⊗ Ωj(M2 ×M3)→ Ωi+j−d(M1 ×M3)

given by

f12 ∗ f23 =

∫
M2

p∗12f12 ∧ p∗23f23

One verifies the following Leibniz rule in a standard way:

d(f12 ∗ f23) = (df12) ∗ f23 + (−1)jf12 ∗ d(f23)

Hence, one gets an induced convolution product in deRham cohomology:

H i(M1 ×M2)⊗Hj(M2 ×M3)→ H i+j−d(M1 ×M3)

One can transport this to homology via Poincaré duality.

After these examples, we now turn to the general formalism of correspondences, which is an
abstract way of constructing convolution products.

Let M1,M2 be C∞ manifolds, say. A correspondence is a closed subset Z12 ⊂M1 ×M2. Given
two correspondences Z12 ⊂M1×M2 and Z23 ⊂M2×M3, we define their compositions as:

Z12 ◦ Z23 = {(m1,m3) : M1 ×M3 : ∃m2 ∈M2 such that (m1,m2) ∈ Z12, (m2,m3) ∈ Z23}

An intuitive way to think about this operation is to treat Z12 (resp. Z23) as multi-valued maps
from M1 →M2 (resp. M2 →M3). Then, Z12 ◦ Z23 is the composition of these maps.

For example, if f : M1 → M2 and g : M2 → M3 are maps. Let Z12 = Graph(f) and Z23 =
Graph(g), then Z12 ◦ Z23 = Graph(g ◦ f).

To define convolution product on Borel-Moore homology, we need a little bit more hypothesis
which we now formulate. Let pij : M1 ×M2 ×M3 →Mi ×Mj be the projection to (i, j)-factor.
Given correspondences Z12 ∈M1 ×M2 and Z23 ∈M2 ×M3 assume:

p13 : p−1
12 (Z12) ∩ p−1

23 (Z23)→M1 ×M3

is proper.
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Note that p−1
12 (Z12) ∩ p−1

23 (Z23) = (Z12 ×M3) ∩ (M1 × Z23), hence

Z12 ◦ Z23 = p23(p−1
12 (Z12) ∩ p−1

23 (Z23))

Now, the properness assumption above lets us push-forward cycles in Borel-Moore homology.
Let d = dimRM2, we define a convolution product:

H lf
i (Z12)×H lf

j (Z23)→ H lf
i+j−d(Z12 ◦ Z23)

via the formula:
c12 ∗ c23 = (p13)∗(p

∗
12c12 ∩ p∗23c23)

Recall that since p12 and p23 are locally trivial fibrations, the pullback is well-defined and given
by p12 ∗ c12 = c12 � [M3] and p∗23c23 = [M1] � c23.
Remark 4.2. A similar convolution product can be defined for any generalized homology theory
that has pullback morphisms for smooth maps, pushforward morphisms for proper maps and
and intersection pairing with supports. At a later part of the book [CG] convolution product on
K-homology theory is studied.

There is also a relative version. Namely, let fi : Mi → S be smooth locally trivial fibrations over
S. Let Z12 ⊂ M1 ×S M2 and Z23 ⊂ M2 ×S M3, then assuming that p13 : p−1

12 (Z1) ∩ p−1
23 (Z3) →

M1 ×S M3 is proper, one can define a convolution product:

∗ : H lf
∗ (Z12)×H lf

∗ (Z23)→ H lf
∗ (Z12 ◦ Z23)

Before we go on, we mention that the following associativity equation holds in Borel-Moore
homology:

c12 ∗ (c23 ∗ c34) = (c12 ∗ c23) ∗ c34

where c12 ∈ H∗(Z12), c23 ∈ H∗(Z23) and c34 ∈ H∗(Z34). The verification of this formula is
straightforward and given in [CG] if you have difficulty convincing yourself.

Suppose now that M is a smooth complex manifold and N a (possiblty) singular variety. Let
π : M → N be a proper map. Put M1 = M2 = M3 = M and Z = Z12 = Z23 = M ×N M .
Expilicitly, we have:

Z = {(m1,m2) ∈M ×M : π(m1) = π(m2)}

It is obvious that
Z ◦ Z = Z

Therefore, we have the convolution map:

H∗(Z)×H∗(Z)→ H∗(Z)

which makes H∗(Z) into an associative algebra with unit given by the fundamental class of the
diagonal ∆M ⊂ Z. Furthermore, let Mx = π−1(x), then we have Z ◦Mx = Mx. Hence, the
convolution map gives:

H∗(Z)×H∗(Mx)→ H∗(Mx)
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which makes H∗(Mx) into a left H∗(Z) module.

We next discuss another important structural map on Borel-Moore homology. Let (S, 0) be a
smooth manifold with a base point 0. Let S∗ = S\{0}. Suppose π : Z → S is a map from
a (possibly singular) space Z. Let Z∗ = π−1(S∗) and Z0 = π−1(0). Assume π : Z∗ → S∗

is a locally trivial fibration (with possibly singular fiber F ). We will define a specialization
map:

lims→0 : H lf
∗ (Z∗)→ H lf

∗−d(Z0), where d = dimRS

Let (Rd, 0) → (S, 0) be a local chart for S around 0. We have the restriction map : H lf
∗ (Z) →

H lf
∗ (π−1(Rd)) , hence we may assume that (Rd, 0) = (S, 0). In this case, write S+ for the

positive half plane in the first coordinate, I+ for the positive first coordinate axis, and I≥0 for
the non-negative first coordinate axis. The specialization is then given by the composition:

H lf
∗ (Z∗)→ H lf

∗ (π−1(S+)) ∼= H lf
∗−d(F )⊗H lf

d (S+)→ H lf
∗−d(F )⊗H lf

1 (I+) ∼= H lf
∗−d+1(π−1(I+))

∂−→ H lf
∗−d(Z0),

where the first map is given by restriction, the middle maps by the Kunneth theorem, and the
last map by the exact sequence of the pair (π−1(I ≥ 0), π−1(I+)).

It is verified in [CG] Ch. 2 that the specialization is independent of the choices of the coordinates
that we made above. We will not discuss this in class.

Another important property is that specialization commutes with convolution in Borel-Moore
homology under natural hypothesis. We state this resutl as follows. The proof will be omit-
ted.

Suppose fi : Mi → S be smooth locally trivial fibrations over S. Assume Zij ∈ Mi ×S Mj

for i < j, i, j = 1, 2, 3 be correspondences where we put Z13 = Z12 ◦ Z23 such that the
natural projections Z∗ij → S∗ are locally trivial fibrations. Furthermore, assumat that p13 :

p−1
12 (Z∗12)×p−1

23 (Z∗23)→ Z∗13 is a morphism of locally trivial fibrations, then we have the following
commutative diagram:

H lf
∗ (Z∗12)⊗H lf

∗ (Z∗23) H lf
∗ ((Z12)0)⊗H lf

∗ ((Z23)0)

H∗(Z
∗
13) H∗((Z13)0)

lims→0

∗ ∗

lims→0

5 Weyl group representations

We now come to one of the main theorems of the course. Let Q[W ] be the group algebra over
Q of the abstract Weyl group. Recall that we use Z to denote the Steinberg variety and let
m = dimRZ = dimRÑ . Recall also that Z = Ñ ×N Ñ is a fibre product with respect to the
Springer map µ : Ñ → N . In particular, Z ◦ Z = Z, hence we have a natural convolution
algebra structure on H lf

∗ (Z).
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Theorem 5.1. There is a canonical algebra isomorphism

H lf
m (Z;Q) ∼= Q[W ]

Proof. Recall that we write Yw for the G-orbit corresponding to w ∈ W for the diagonal G
action on B×B, and we have that Z =

⊔
w T
∗
Yw

(B×B). The irreducible components T ∗Yw(B × B)
of Z are all of dimension m. We have seen that the top-dimensional Borel-Moore homology
group H lf

m (Z;Q) has a basis given by the fundamental classes of these irreducible components.
In particular, it is clear that

dimQH
lf
m (Z;Q) = dimQQ[W ]

The more difficult part of the theorem is to show that the algebra structures match on both
sides. This is far from obvious. The problem is that these irreducible components are singular
in general and intersect in a complicated way. In fact, rather surprisingly, in order to prove this,
we will need to pass to a different basis of H lf

m (Z;Q).

We would like construct a basis of H lf
m (Z) by exhibiting a map from W → H lf (Z) assigning

w → [Λ0
w] so as to satisfy the equation:

[Λ0
yw] = [Λ0

y] ∗ [Λ0
w]

The superscript 0 signifies specialization, and it will be made clear later on.

Recall that we have seen that restriction of µ on the semisimple regular locus is a finite Galois
cover µ : g̃sr → gsr. Given w ∈ W , consider the Graph(w) ⊂ g̃sr ×g g̃

sr of the fibrewise action
of w. Recall that we had the adjoint quotient map:

χ̃ : g̃→ H = h

sending (x, b) → [x] ∈ b/[b, b] = H. We let g̃h = χ̃−1(h) to be the fibre above h ∈ h. Note
that χ̃ : g̃ → H is a locally trivial fibration. Indeed, recall that g̃ = G ×B b and for any subset
S ∈ H = b/[b, b], we have

χ̃−1(S) = G×B (S + n)

Let pr2 : g̃×g g̃→ g̃ denote the projection to the second component. For h ∈ hsr, let us write

Λhw = Graph(w) ∩ (pr2 ◦ χ̃)−1(h) = {(x, b, x, b′) : x ∈ b ∩ b′, (b, b′) ∈ Yw , χ̃(x, b′) = h}

where Yw is the G-orbit corresponding to w ∈W for the diagonal action of G on B × B.

In other words, for h ∈ hsr, Λhw is the graph of the map w : g̃h → g̃w(h) induced by the W -action
on g̃rs. Therefore, in Borel-Moore homology of g̃×g g̃, for h ∈ hsr, we have

[Λhyw] = [Λhy ] ∗ [Λhw]

The idea of the argument is to analyze what happens as h→ 0.

Let us define:
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Λw := {(x, b, x, b′) : x ∈ b ∩ b′, (b, b′) ∈ Yw}

Hence, the projection Λw → Yw is a vector bundle over Yw and in particular, has dimension
dimg. So, we have a decomposition of g̃×g g̃ into irreducible components :

g̃×g g̃ =
⋃
w

Λw

In fact, it is easy to conclude from what we have seen before that:

Λw := Graph(w) ⊂ g̃×g g̃

is the closure of of the Graph(w).

Moreover, over the special point 0 ∈ h, we have :

Λ0
w = Λw ∩ χ̃−1(0) ⊂ (g̃×g g̃) ∩ (Ñ × Ñ ) = Ñ ×N Ñ = Z

(In fact, Λ0
w turns out to be all of Z).

Therefore, we would like to construct the cycles [Λ0
w] by specialization. We may work by re-

stricting χ̃ to one Λw at a time. Let Hw = Graph(H
w−→ H) = {(w · h, h) ∈ H × H}. We have a

locally trivial fibration:

ν : g̃×Hw g̃ = {(y, x) ∈ g̃× g̃ : χ̃(y) = w · χ̃(x)} → Hw

given by (y, x)→ (χ̃(y), χ̃(x)).

By definition, we can identify Λw in g̃×Hw g̃ as the preimage of the diagonal under the projection
µ� µ : g̃×Hw g̃→ g× g. Note that ν−1(0) = Ñ × Ñ .

Then the restriction of ν to Λ gives a family of varieties νw : Λw → Hw, with the desired
properties that

ν−1
w (h) = Graph(g̃sr

w−→ g̃sr) for h ∈ Hsr, and ν−1
w (0) ⊂ Z

The problem is that this restriction is no longer locally trivial.

But, the specialization set-up required that a locally trivial fibration outside of the special point
0.

To overcome this difficuly, we replace H with a smaller set l ⊂ H. For a fixed w ∈ W , choose a
2-dimensional real subspace l such that l∗ = l− {0} lies in Hrs. Consider lw = Graph(l

w−→ w · l)

Now, over lw we have the restriction νw : Λl
w := ν−1

w (lw) → lw which is locally trivial over
l∗w = lw − {0}.
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We can therefore define a specialization map:

H lf
∗ (Λl

w)→ H lf
∗−2(Λ0

w) = H∗−2(Z)

Define the homology class [Λ0
w] = limh→0[Λl∗

w ] ∈ Hm(Z).

That this specialization does not depend on the choice of l∗ is an easy argument using the
transitivity of specialization and the fact that any two elements h, h′ ∈ Hrs can be connected by
a piecewise linear (real) path. The desired equation :

[Λ0
yw] = [Λ0

y] ∗ [Λ0
w]

follows from the fact that “specialization commutes with convolution”.

Finally, we need to prove that {[Λ0
w].w ∈ W} form a basis. Firstly, note that, the projection of

each Λhw → B×B is supported in Yw by definition. Therefore, [Λ0
w] is supported at most on Yw.

Hence, this implies that:

[Λ0
w] =

∑
v≤w

cw,v[T ∗Yv(B × B)]

for some cw,v and where v ≤ w is in the Bruhat ordering.

Claim: cw,w = 1 for all w ∈W .

We give a sketch. First observe that Λhw → Yw can be identified with the flat family of affine
bundles over Yw:

G×B∩w·B (h+ n ∩ w · n)→ G/(B ∩ w ·B)

As h → 0, [Λhw] degenerates to the fundamental class G ×B∩w·B (n ∩ w · n) which is exactly
[T ∗Yw(B × B)].

Therefore, the matrix (cvw) is upper triangular with diagonal entries 1, hence is invertible. This
completes the proof.

Example 5.2. Let g = sl2(C) Then, we have W = 1, s. c11 = css = 1, c1s = 1. (Explain this in
class via graphs of Dehn twists. . . )

Notation: From now on, we will write H(Z) for H lf
m (Z) where m = dimRZ.

Recall that we have the Springer resolution µ : Ñ → N whose fibre over xN is denoted by Bx.
Z = Ñ ×N Ñ is the Steinberg variety that maps to N via µ. For x ∈ N , put Zx = Bx×Bx.

Clearly, we have :
Z ◦ Zx = Zx = Zx ◦ Z

Therefore, if d = dimRBx, then we have that H(Zx) := H lf
2d(Zx) is an H(Z)-bimodule.

Note that Künnerth formula givesH lf
d (Bx)⊗H lf

d (Bx) = H lf
2d(Zx). Furthermore, since Bx◦Z = Bx

and Z ◦Bx = Bx, we can make H(Bx) := H lf
d (Bx) into a H(Z)-bimodule. We will write LH(Bx)

and H(Bx)R when we view H(Z) as a left and right H(Z)-modules respectively.
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Künneth isomorphism yiels an isomorphism of H(Z)-bimodules:

H(Zx) ∼= LH(Bx)⊗Q H(Bx)R

Claim: (This is not obvious and we leave its justification for later) There is an isomorphism of
right H(Z)-modules

LH(Bx)∨ ∼= H(Bx)R

Here recall that if A is a Q-algebra and V is a left A-module, then V ∨ = HomQ(V,Q) is a right
A-module, where the multiplicatioon of f ∈ HomQ(V,Q) is given by (f · a)(v) = f(a · v).

Next, since G acts on N by adjoint action, we get an induced map Bx → Bg(x) for all g ∈ G.
This induces a morphism on Borel-Moore homology:

g : H∗(Bx)→ H∗(Bg(x))

We have the following compatibility:
Lemma 5.3. The left (resp. right) H(Z)-action on Borel-Moore homology H(Bx) is compatible
with the G-action, in the sense that for z ∈ H(Z), g ∈ G and c ∈ H∗(Bx), we have:

z · g(c) = g(z · c)

Proof. Since G acts on Z, and maps Bx → Bg(x), it follows easily from the definition of convo-
lution product that:

g(z) ∗ g(c) = g(z ∗ c)

Therefore, we need to show that g(z) = z for z ∈ H(Z). Note however that G is assumed to be
connected throughout, therefore its action on homology is trivial (since the identity element in
G acts as identity.)

Now, recall that CG(x), the centralizer of x ∈ N in G acts on the variety Bx by conjugation.
Hence, we get an induced action on the homology of Bx. The identity component C◦G(x) acts
trivially on homology, so that the action factors through the finite component group C(x) =
CG(x)/C◦G(x)

It follows the we have the following decomposition into C(x)-isotypical components:

C⊗Q LH(Bx) =
⊕

χ∈C(x)∧

χ⊗H(Bx)χ

where C(x)∧ denotes the set of (equivalence classes of) irreducible complex representations of
the (finite) group C(x) that occur in C⊗Q LH(Bx) with non-zero multiplicity.

Here is how to understand this, consider the action of C(x) on C ⊗Q LH(Bx) and decompose
it into irreducible representations parametrized by characters χ but note that same character
might appear many times. Now, the action of H(Z) will not necessarily preserve these irreducible
representations but will permute them. However, this permutation has to send an irreducible
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representaiton of C(x) to an isomorphic one because of the compatibility between C(x) and
H(Z) actions. So, we collect all the irreducible representations of C(x) with character χ that
appear and call their direct sum H(Bx)χ. The latter is then a representation fo H(Z).

Recall that by Maschke’s theorem group algebra Q[G] of any finite group G is a semisimple
algebra. In particular, H(Z) ∼= Q[W ] is a semisimple algebra. Therefore, we must have that
H(Bx) decompose into a direct sum of irreducible representations.

We are now in a position to state the Springer’s main theorem:
Theorem 5.4. (Springer correspondence)

• For any x ∈ N , and χ ∈ C(x)∧, Hd(Bx)χ is an irreducible H(Z)-module where d =
dimRBx.

• The modules Hd(Bx)χ and Hd(By)ψ are isomorphic if and only if the pairs (x, χ) and (y, ψ)
are G-conjugate.

• The set {H(Bx)χ|x ∈ N , χ ∈ C(x)∧} is a complete collection of isomorphism classes of
simple complex H(Z)-modules.

Remark 5.5. Note that in the case g = sln(C), it turns out that Hd(Bx) is irreducible as an
H(Z)-module for any x ∈ N . This can be seen by carrying out all the constructions using
the reductive algebra g = gln(C). Indeed, sln(C) is the derived subalgebra of gln(C). All the
constructions that we did can be carried out using a reducitve Lie algebra, and the varieties
B,N ,Z remain unchanged if we replace a reductive Lie algebra g with its derived (semisimple)
subalgebra [g, g]. The advantage of considering the gln is that we may now assume G = GLn(C).
But then for any x ∈ g, CG(x) is connected. Hence, C(x) = CG(x)/C◦G(x) = 1. To see that
CG(x) is connected, observe that CG(x) = {y ∈ Mn(C) : xy = yx, dety 6= 0}. This is a
complement of a complex hypersurface in a vector space, which is connected. (Note that it is not
true in general that the component groups of a centralizer in SLn(C) is trivial. )

Before, we go on with the proof, we need the following result (which we have claimed be-
fore):
Lemma 5.6. There is an isomorphism of right H(Z)-modules

LH(Bx)∨ ∼= H(Bx)R

Proof. There is an involution on Z given by switching the factors in Ñ × Ñ . This gives rise to
an involution c→ ct on H(Z). With respect to the convolution algebra structure on H(Z), this
gives us an algebra anti-involution, that is:

(c1 ∗ c2)t = ct2 ∗ ct1

Now given a right H(Z)-module V , define a left H(Z)-module structure on V by:

c · v = v · ct for c ∈ H(Z), v ∈ V

Call this left H(Z)-module V t. Then, by definition we have:

(H(Bx)R)t = LH(Bx)∨
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Let V = LH(Bx)∨. Thus, the claim is to show that there is an isomorphism of H(Z)-modules:

V ∼= (V ∨)t

Now, we claim that under the isomorphism Q[W ] ∼= H(Z), the anti-involution c→ ct on H(Z)
corresponds to the anti-involution w → w−1 on Q[W ]. To see this, obser ver that the involution
on Z applied to a graph Λhw at a semisimple regular h gives

(Λhw)t = Λwhw−1

But, wh is also regular semisimple, therefore, we can obtain consider the limiting cycles as h→ 0
or wh→ 0. This implies that [Λ0

w]t = [Λ0
w−1 ].

It follows that, the left H(Z)-module (V ∨)t is the contragredient module of V . Recall that this
just means that

c · f(v) = f(c−1v), for f ∈ Hom(V,Q), c ∈ H(Z), v ∈ V

But now, recall that H(Z) = Q[W ]. So, it suffices to show that V is isomorphic to its con-
tragradient as a W -module. But, W is a finite group, there any finite-dimensional W -module
admits a W -invariant positive definite bilinear form. Hence, such modules are isomorphic to
their contragredients.

We now turn back to the proof of Springer’s correspondence.

Partially order the nilpotent orbits of N according to containment in closure, and for such an
orbit O, let Z<O , ZO , and Z≤O be the corresponding preimages in Z. We notice that H(Z<O)
and H(Z≤O) are both 2-sided ideals in H(Z). We put

HO = H(Z≤O)/H(Z<O)

The partial order on the set of orbits gives us a filtration on the algebra H(Z) by two-sided
ideal H(Z≤O). Let grH(Z) denote the associated graded bimodule. On the other hand since
H(Z) = Q[W ] is the group algebra of a finite group, it is a semisimple algebra. Therefore,
we have an isomorphism of H(Z)-bimodules H(Z) ∼= grH(Z). Thus, we have the bimodule
isomorphism:

H(Z) ∼=
⊕
O⊂N

HO

Now, recall that H(Z≤O) and H(Z<O) have bases given by the fundamental classes of the irre-
ducible components of their respective spaces. Therefore, HO has a basis given by fundamental
classes of the irreducible component of ZO.

Recall that ZO = Õ×O Õ = G×CG(x) (Bx × Bx) after picking any x ∈ O. Hence, its irreducible
components are the in one-to-one correspondence with C(x) = CG(x)/C◦G(x)-orbits of pairs of
irreducible components of Bx. Thus, we can write

HO = H(Zx)C(x) = H(Bx ×Bx)C(x) = (LH(Bx)⊗H(Bx)R)C(x)
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where we used the Künneth isomorphism for the last equality.

(Strictly speaking, we have only given a justification for the first equality as addittive vector
spaces but this identification is in fact an identification of H(Z)-bimodules. This is not hard
just a bit more tedious than I would like to discuss. It is based on the fact that the modules
H(Bx) do not vary as x varies in an orbit O. See Sec. 3.5 of [CG] for details.)

Now, we can use the Lemma that we proved above to conclude that:

HO = (LH(Bx)⊗ LH(Bx)∨)C(x) = EndC(x)(LH(Bx))

Next, recall that we have the decomposition, tensoring with C over Q, we have the decomposi-
tion:

C⊗Q LH(Bx) =
⊕

χ∈C(x)∧

χ⊗H(Bx)χ

Summing over all orbits O ⊂ N , we obtain:

C[W ] = C⊗Q H(Z) =
⊕
O
HO =

⊕
[x,χ]

EndC(LH(Bx)χ)

where the last sum is over G-conjugay classes of pairs (x, χ) where χ ∈ C(x)∧. (We used the
fact that HomC(x)(χ, ψ) = C if χ = ψ and 0 otherwise).

The statement of Springer correspondence follows from this by using the semisimplicity of C[W ].
Namely, let {Eα} be a complete collection of irreducible complex left H(Z)-modules. Since
C⊗Q H(Z) is semisimple, we have:

C⊗Q H(Z) =
⊕
α

End(Eα)

On the other hand LH(Bx)χ is a left H(Z)-module, hence it decomposes into irreducible com-
ponents with multiplicities:

LH(Bx)χ =
∑

nαx,χEα

But then we get:

C⊗Q H(Z) =
⊕
[x,χ]

⊕
α,β

nαx,χn
β
x,χHomC(Eα, Eβ)

From which, we conclude that
∑

[x,χ] n
α
x,χn

β
x,χ = δα,β. Hence, it follows that LH(Bx)χ = Eα for

some α.

Here is some fun consequence. Recall that for any finite group G, we have the elementary
result:

|G| =
∑
α

(dimEα)2
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where Eα runs through irreducible reprensentations of G. For example, this follows from what
we said above. Namely,

C[G] =
∑
α

End(Eα)

Here is an alternative way to see it for Weyl groups. Say, for simplicity of notation we restrict
to g = sln. Then the component group C(x)∧ is trivial.

Now, we have Z =
⋃

O ZO and the irreducible components of ZO = G ×CG(x) (Bx × Bx) is
parametrized by pairs of irreducible components of Bx. Therefore :

|Sn| = #{ components of Z} =
∑
O

(#components of Bx)2 =
∑
O

(dimH(Bx))2

Since H(Bx) gives us all the irreducible representations of Sn, this reproduces the elementary
result that we mentioned above.

Here is another interesting combinatorial identity.
Corollary 5.7. We have ∑

α

dim(Eα) = #{involutions in Sn}

where the sum runs through all the irreducible representations of Sn.

Proof. An element w ∈ Sn corresponds to the irreducible component of Z given by the conormal
bundle T ∗Yw(B × B). As we saw such a component is sent to T ∗Yw−1

(B × B) under the involution

on Z. Therefore, the number of irreducible components of Z fixed by the involution on Z is
equal to the number of involutions in Sn.

On the other hand, we can also describe irreducible components of Z via the decomposition
Z =

⊔
O ZO. A component of ZO given by G ×C(x) (Bαx × B

β
x), where x ∈ O, is fixed by the

involution if and only if α = β.

Example 5.8. A distinguished Springer fiber is B0 = B. This is a smooth irreducible variety.
Hence Htop(B) = C. It is not too hard to see that W action on this gives the sign representation
of W since a simple reflection changes the orientation of G/B.

If x is regular nilpotent, then we know that Bx is a single point. Hence Htop(Bx) corresponds to
the trivial representation.

Say g = sln, and x has Jordan type (n− 1, 1), then Bx consists of (n− 1) copies of P1 connected
linearly according to the Dynkin diagram of type An−1. The action of W yields the (n − 1)-
dimensional irreducible subrepresentation of the permutation representation of Sn, where each
reflection acts by exchanging the corresponding P1’s.
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6 Springer theory for U(sln)

In this section, we give a survey of the results in Ch. 4 of [CG].

We now have a twist in the story. Namely, until now, we have focused on representations of
the Weyl groups. These are finite groups. Admittedly, their representation theory is accessible
via more elementary tools. Nonetheless, geometrically minded reader would surely appreciate
the beauty of the constructions given in the previous sections. On the other hand, our main
motivation to study the geometry of the Springer fibration was to go beyond the representation
theory of Weyl groups. The machinery of constructing representations of convolution algebras
like H(Z) applies in a much more general and the geometry enables us to study representa-
tion theory of much more complicated algebras than C[W ] whose representation theory is not
accessible otherwise.

We fix an integer n ≥ 1 corresponding to sln(C). We also fix another integer d ≥ 1 bearing no
relation to n whatsoever. Let us pose

F = {0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Cd}

be the set of all n-step flags in Cd. In the current situation, F will play the role that the flag
variety B played when we studied Springer representations for the Weyl group.

The space F is a compact smooth manifold with connected components parametrized by parti-
tions:

d = (d = d1 + d2 + . . .+ dn, di ∈ Z≥0)

To the partition d = (d1, . . . , dn), we associate the connected component of F consisting of
flags:

{Fd = {0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Cd : dimFi/Fi−1 = di}

Note that di are allowed to be zero, hence flags Fi and Fj are allowed to coincide for i 6= j. The
dimension of the component Fd is given by:

dimCFd =
d!

d1!d2! . . . dn!

We next introduce the nilpotent variety in this setting to be:

N = {x ∈Md×d(C) : xn = 0}

We are going to define an analogue of the Springer fibration. Let us define:

M = {(x, F ) ∈ N ×F : x(Fi) ⊂ Fi−1, i = 1, . . . , n}

The projection to the first component is denoted by µ : M → N and is analogous to the Springer
fibration. We denote µ−1(x) = Fx for “Springer fibers”.
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On the other hand, the projection fo M to the second component exhibits it as:

M = T ∗F

The above decomposition of F into its connected components yields a decomposition of M =⊔
dMd, where Md = T ∗Fd. We write

Fd,x = Fx ∩Md

for the connected components of Fx.

Observe that we have a natural GLd(C) action on M,N (by conjugation) and F and the pro-
jections commute with this action.

We define

Z = M ×N M = {(m1,m2) ∈M ×M |µ(m1) = µ(m2)} ⊂M ×M

in an analogous way to the Steinberg variety.

We have the following lemma of Spaltenstein:
Lemma 6.1. For any x ∈ N and any partition d, the variety Fd,x is connected of pure dimension
(each irreducible component is of the same dimension) and

dimOx + 2dimFd,x = 2dimFd

where Ox is the is the GLd(C) orbit of x ∈ sln(C).

The proof of this result is by an explicity computation, which we omit. Furthermore, the
equidimensionality assertion fails for simple groups of types other than SLn.
Lemma 6.2. The number of GLd(C)-diagonal orbits in F × F is finite.

Proof. Write B for the flag variety of GLd(C). There is a surjective GLd(C)-equivariant map
B → Fd from the set of complete flags in Cd to any Fd. Hence, there is an GLd(C)-equivariant
surjection from B × B → Fd1 ×Fd2 .

In a completely analogous way (to the Weyl group case), we have that

Z =
⊔
α

T ∗Yα(F × F)

as a union of conormal bundles, where Yα are the GLd(C)-diagonal orbits in F × F (where as
before the symplectic form on T ∗(F × F) differs from the one on T ∗F × T ∗F) by a switch on
the sign on the second component.)
Corollary 6.3. We have Z ◦Z = Z, in particular, H(Z) is an associative algebra with unit and
H(Fx) is an H(Z)-module, for any x ∈ N .
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Note that Z is not connected and it has irreducible components of different dimensions, however
if Zα is an irreducible component of Z contained in T ∗Fd1×T ∗Fd2 then it has half the dimension
(as a Lagrangian should have).

Above, we write H(Z) for the vector subspace of H lf
∗ (Z) spanned by the fundamental classes

of the irreducible components of Z, and similarly H(Fx) for the vector subspace of H lf
∗ (Fx)

spanned by the fundamental classes of the irreducible components of Fx.

The following theorem is analogous to what we have seen in the case of the Springer represen-
tations for the Weyl group:
Theorem 6.4.

• H(Z) is a finite-dimensional, semisimple associative algebra with unit.

• The representations H(Fx) and H(Fy) are isomorphic as H(Z)-modules if and only if x
and y are conjugate by GLd(C).

• The collection {H(Fx)} as x runs through representations of the GLd(C) conjugacy classes
in N is a complete collection of the isomorphism classes of irreducible H(Z)-modules.

The following is the main theorem of Chapter 4 of [CG], we will omit the proof.
Theorem 6.5. There is a natural surjective algebra homomorphism:

U(sln(C))→ H(Z)

with kernel Id is the two-sided ideal given by the annihilator of (Cn)⊗d, the dth tensor product
of the fundamental representation Cn of sln(C).

Note that we cannot expect to have an isomorphism because U(sln(C)) is infinite dimensional
whereas H(Z) is finite-dimensional.

Recall that any finite-dimensional irreducible sln(C) representation has a highest weight w1ω1 +
. . .+ wn−1ωn−1 where ωi are fundamental weights.
Corollary 6.6. Under the above isomorphism H(Fx) is the irreducible highest weight represen-
tion of sln with highest weight w1ω1 + . . . + wn−1ωn−1 and wi is the number of (i × i)-Jordan
blocks in the Jordan normal form of x.

Note that the sum of the weights w1 + . . . + wn−1 gives a partition of d. It is known that
the irreducible sln(C) modules corresponding to partitions of d are precisely those that occur
with non-zero multiplicity in the decomposition of (Cn)⊗d. Clearly, by increasing d if necessary,
we can exhibit any finite-dimensional irreducible representation of sln(C) as H(Fx) for some
x.

7 Modern approach to Springer theory

Let X be a topological space and K be a field. A sheaf of K-vector spaces, F , on X is a con-
travariant functor:

F : {open sets in X and inclusions} → {K−vector spaces and linear maps}
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obeying the sheaf axiom : For any collection of open sets {Vi}i∈I in X and si ∈ F(Vi) that are
compatible with one another in the sense that si|Vi∩Vj = sj |V i∩V j , for all element i, j ∈ I there

exists a unique s ∈ F(
⋃
i∈I Vi) such that s|Vi = si for all i ∈ I. We write F(U) for the image

of U , and rUV : F(U) → F(V ) for the restriction map corresponding to the inclusion V → U .
The elements of F(U) are called sections of F over U .
Definition 7.1. A sheaf F on X is called locally constant if every x ∈ X has a neighborhood
U such that for all y ∈ U , the canonical map F(U)→ Fy is an isomorphism. A local system is
a locally constant sheaf with finite dimen- sional stalks. If X is connected then all these stalks
automatically have the same dimension. This dimension is called the rank of the local system.

The category of sheaves of C-vector spaces is denoted by Sh(X). It is an abelian category, i.e.
the notions of injections, surjections, kernels, cokernels, exact sequences, adding maps betwee
the same pair of sheaves, and direct sums all make sense and have the usual properties.

Define the category Kb(Sh(X)) as the category whose objects are finite complexes of sheaves on
X

A• = (0→ A−m → A−m+1 → . . .→ An−1 → An → 0) m,n ≥ 0

where each Ai is a sheaf on X. The morphisms are morphisms of complexes of A• → B•

commuting with the differentials. Given a complex of sheaves A•, we let

Hi(A) = Ket(Ai → Ai+1)/Im(Ai−1 → Ai)

denote the i-th cohomology sheaf. A morphim of complexes is called a quasi-isomorphism
provided it induces isomorphisms between cohomology sheaves.

The derived categoryDb(Sh(X) is by definition the category with the same objects asKb(Sh(X))
and with morphisms which are obtained from those in Kb(Sh(X)) by formally inverting all the
quasi-isomorphisms (each hom space is obtained by localisation at quasi-isomorphisms); thus
quasi-isomorphisms become isomorphisms in the derived category.

The notion of “isomorphism” in Db(Sh(X)) is defined so as to insure that any object in
Db(Sh(X)) can be represented by a complex of injective sheaves.

From now on assume that X is a complex algebra variety. A sheaf F on X is said to be
constructible, if there is an algebraic stratification X = tαXα such that for each α, the
restriction of F to the stratum Xα, is a locally constant sheaf of finite dimensional vector
spaces. An object A ∈ Db(Sh(X)) is said to be constructible complex if all the cohomlogy
sheaves Hi(A) are constructible.
Definition 7.2. Let Db

c(X) to be the full subcategory of Db(Sh(X)) formed by constructible
complexes.

The category Db
c(X) is called the bounded derived category of constructible sheaves in spite of

the fact that it is not the derived category of construcrible sheaves.

Recall that if f : X → Y is a map and F is a sheaf of C-vectorr spaces on X, we can push it
forward by

f∗(F)(U) = F(f−1(U)
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The derived functor of f∗ is denoted by Rf∗ : Db
c(X)→ Db

c(Y ). (Recall that derived functor is
defined by replacing an object with a complex of injective sheaves and then applying the functor
to that complex). After sufficient familiarity, one usually writes f∗ instead of Rf∗ for the derived
functor of pushforward.

While at it, let me mention that there is also f! : Db
c(X)→ Db

c(Y ) called the push-forward with
proper supports defined by for a sheaf F on X by:

f!F(U) = {s ∈ F(f−1(U))|f : Supp(s)→ U is proper .}

There are also adjoint functors to these, given by pullbacks f∗ and f !. Namely, there are
canonical isomorphisms:

Hom(f∗A2, A1) = Hom(A2, f∗A1) and Hom(f!A2, A1) = Hom(f !A2, A1)

The cohomology of the fibers of a map are precisely the local invariants of the derived pushfor-
ward of the constant sheaf along the map. Global results about the pushforward will imply local
results about the cohomology of the fibers. For example, much of Springer’s theory of Weyl
group representations is encoded in the following statement
Theorem 7.3. (Springer correspondence) The restriction of the derived pushforward Rµ∗Cg̃

of the constant sheaf on g̃ to the open locus of regular semisimple elements grs ⊂ g is a local
system with monodromies given by the regular representation of the Weyl group of g. The entire
pushforward is the canonical intersection cohomology extension of this local system.

The above statement is an application of the following very deep result of Beilinson-Bernstein-
Deligne:
Theorem 7.4. (Decomposition Theorem). Let µ : M → S be a projective map of varieties
with M smooth. The pushforward Rµ∗CM is a direct sum of (shifted) intersection cohomology
sheaves of local systems on subvarieties of S. Furthermore, the local systems giving the twisted
coefficients are semisimple.

We haven’t defined intersection cohomology yet, but let us discuss a very special case of the
above decomposition theorem.

Suppose f : X → Y is a C∞ fiber bundle with smooth compact fiber F , let Hj(F ) denote
the local system on Y whose fiber at the point y ∈ Y is H(f−1(y)). There are the associated
Leray-Serre spectral sequence

Ei,j2 = H i(Y ;Hj(F ))→ H i+j(X)

and the monodoromy representation ρi : π1(Y, y0)→ GL(H i(F )).

Note that even if Y is simply connected, the spectral sequence can be non-trivial, as can be seen
from the example of the Hopf fibration f : S3 → S2.

We define a family of projective manifolds to be a proper holomorphic submersion f : X → Y
of nonsingular varieties that factors through some product Y × PN and for which the fibers
are connected projective manifolds. The nonsingular hypersurfaces of a fixed degree in some
projective space give an interesting example. By a classical result of Ehresmann, such a map is
also a C∞ fiber bundle. The results that follow are due to Deligne.
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Theorem 7.5. (Decomposition and semisimplicity for families of projective manifolds) Suppose
f : X → Y is a family of projective manifolds. Then

• The Leray spectral sequence degenerates at the E2 -page and induces an isomor- phism

H i(X) =
⊕
a+b=i

Ha(Y ;Hb(F ))

• The monodromy representation is semisimple: it is a direct sum of irreducible representa-
tions.

The second part of the theorem is remarkable because the fundamental group of Y can be
infinite.

This is a special case of the following result on intersection homology:
Theorem 7.6. Let f : X → Y be a proper map of varieties. There exist finitely many
triples (Ya, La, da) made of locally closed, smooth and irreducible algebraic subvarieties Ya ⊂ Y ,
semisimple local systems La on Ya and integer numbers da , such that for every open set U ⊂ Y
there is an isomorphism

IHr(f−1U) =
⊕
a

IHr−da(U ∩ Ya, La)

In particular, if X is smooth, taking U = Y , we get a decomposition of H∗(X).

So, what are these intersection cohomology complexes? They are the simple (in the sense
of irreducible) objects of an abelian heart of the triangulated category Db

c(X). The heart is
not the full subcategory of constructible sheaves, rather it is the full subcategory of perverse
sheaves.

7.1 Intersection homology and Perverse sheaves

(We follow the beautiful exposition given in [KW]).

We begin with a topological treatment of intersection homology. For L compact Hausdorff
topological, let C(L) denote the open cone on L, i.e. the result of identifying the subset L×{0}
of L× [0, 1) to a single point.
Definition 7.7. A topological stratified space is defined inductively on dimension. A 0-dimensional
stratified space X is a countable set with the discreet topology. For n > 0, an n-dimensional
topological stratification of X is a filtration

∅ = X−1 ⊂ X0 ⊂ X1 . . . ⊂ Xn−1 ⊂ Xn = X

of X by closed subspaces such that for each i and for each point x of Xi r Xi−1 , there exists
a neighborhood U ⊂ X of x in X, a compact n − i − 1-dimensional stratified space L, and a
filtration-preserving homeomorphism

U ∼= Ri × C(L)
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If X is a topologically stratified space, the i-dimensional stratum of X is the space Xi rXi−1.
Connected components of Xi rXi−1 are called strata and L is called the link of the stratum on
which x lies.

A topological pseudomanifold of dimension n is a paracompact Hausdorff topological space X
which possesses a topological stratification such that

Xn−1 = Xn−2

and X rXn−1 is dense in X.

An important class of pseudomanifolds is the class of complex quasi-projective varieties. In fact,
this is a subclass of the class of piecewise-linear pseudomanifolds, i.e. X has a triangulation
such that each Xj is a union of simplices.

Geomertric realization of a simplicial complex is an n-dimensional piecewise-linear pseudoman-
ifold if and only if every simplex is a face of an n-simplex, and every (n− 1)-simplex is a face of
precisely two n-simplices.

Let T : |K| → X be a triangulation of X compatible with the stratification. Write CTi (X) for
the space of all (finite) simplicial i-chains of X with respect to T .
Definition 7.8. The support |ξ| of a simplicial i-chain ξ = Σσ∈K(i)ξσσ is given by

|ξ| =
⊔
ξσ 6=0

T (σ)

The intersection complex ICTi (X) is a subcomplex of CTi (X) whose elements are those i-chains
ξ such that there are restrictions on the intersections of |ξ| and Xj for each j. These restriction
are imposed by a “perversity function”.
Definition 7.9. A perversity is a function p : {2, . . . , n} → N such that p(2) = 0 and p(i+ 1) =
p(i) or p(i) + 1.

The most important examples of perversity are:

1. Zero-perversity: p(i) = 0 for all i. (0, 0, . . . , 0).

2. Top perversity: p(i) = i− 2. (0, 1, 2, . . . , n− 2).

3. The (lower) middle perversity p is defined by p(i) = integer part of (i−2)/2. (0, 0, 1, 1, 2, 2, . . .).

4. The (upper) middle perversity has values p(i) = the integer part of (i−1)/2. (0, 1, 1, 2, 2, . . .).

Fix a perversity p. The key definition is the following:
Definition 7.10. We say that an i-chain ξ ∈ CTi (X) is p-allowable if

dimR|ξ| ∩Xn−k ≤ i− k + p(k)
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Note that since the triangulation T is compatible with the stratification, the intersection |ξ| ∩
Xn−k is a union of simplices and hence has a well-defined dimension (the largest dimension of
any of the faces of the constituent simplices).

Since Xn−k has codimension k an i-chain is dimensionally transverse to it if

dimR|ξ| ∩Xn−k ≤ i− k

so, turning on the perversity value p(k) tells us how much non-transversity is allowed.

We then define:
Definition 7.11. Let IpCTi (X) to be the subspace of CTi (X) consisting of all i-chains ξ ∈ CTi (X)
such that

1. ξ is p-allowable i-chain,

2. ∂ξ is a p-allowable (i− 1)-chain.

We define IpCi(TX) to be the colimit of IpCTi (X) over all triangulations of T compatible with
the stratification (note that refinements of triangulation induce inclusion maps).

The intersection homology group of X with perversity p is defined to be

IpHi(X) =
ker ∂ : IpCi(X)→ IpCi−1(X)

im∂ : IpCi+1(X)→ IpCi(X)

Remark 7.12. In simplicial homology, one has that H∗(X) = HT
∗ (X) for any triangulation T .

This is not true in intersection homology (one really needs the colimit over all triangulations).
However, if the triangulation T is flag-like, i.e for each i the intersection of any simplex σ with
the closure Xi is a single face of σ then IpH∗(X) = IpHT

∗ (X).

We have the following fundamental result:
Theorem 7.13. (Goresky-MacPherson) IpHi(X) does not depend on the choice of stratification.
(Indeed, any homemomorphism between topological pseudomanifolds induces isomorphism.)

One defines singular intersection homology groups in a similar way. We say that a singular
i-simplex σ : ∆i → X is p-allowable if

σ−1(Xn−k −Xn−k−1) ⊂ (i− k + p(k))-skeleton of ∆i for k ≥ 2.

Let’s get to work and compute this in an example. Let X be the topological space given by
suspension Σ(A tB) where A ∼= B ∼= S1. (i.e. twice pinched torus).

First, let’s compute the usual homology. This is not too hard, let us pick two points a, b on
the circles A and B respectively. These are homologous in because there is a 1-chain in X
that connectc them. Thus, in fact, it is clear that H0(X) = K. Furthermore, the union of
suspensions of a and b, Σ(a)−Σ(b) gives us a 1-cycle that generates H1(X) = K and finally, we
have H2(X) = K⊕K generated by Σ(A) and Σ(B).

Next, let us turn to intersection homology.
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Let us choose the stratification to be X2 = X, X1 = X0 to be the two singular points. By
definition, the only perversity function has p(X0) = 0.

Now, the points a and b are valid 0-cycles in IpH0(X), however the 1-chain in X, call it ξ,
that connects a and b is no longer allowed. Because it is no (p, 1)-allowable : We have 0 =
dimR|ξ| ∩X0 > 1− 2 + 0 = −1. Therefore, in fact, IpH0(X) = K+K. Similary, the 1-cycle that
Σ(a) − Σ(b) is not allowed, and one can see easily that IpH1(X) = 0. Finally, the generators
Σ(A) and Σ(B) are (p, 2)-allowable, as we have, for ex. :

0 = dimR|Σ(A)| ∩X0 ≤ 2− 2 + 0 = 0

Hence, we have IHp
2 (X) = K⊕K.

We observe here a remarkable feature of intersection homology: While the usual homology
H∗(X) did not satisfy Poincaré duality, IHp

∗ (X) satisfies Poincaré duality! (Of course, this is
not a coincidence.)

One extends the definition of (p, i)-allowable to locally finite chains in a straightforward way and
the corresponding Borel-Moore type intesection homology group is denoted by IpH lf (X).

We say an m-dimensional pseudomanifold is irreducible if Xm r Xn−2 is connected, in which
case Hm(X;Z) is either Z or 0. If it is Z then we say that X is orientable and a choice of a
generator for Hm(X) is an orientation.

We call p and q to be complimentary perversities if p(i) + q(i) = i− 2 for all i ≥ 2.

Theorem 7.14. (Poincaré duality, Goresky and MacPherson) Suppose that X is oriented topo-
logical pseudomanifold of dimension d, and p and q are complementary perversities. Then, there
is a non-degenerate bilinear form:

IpHi(X)× IqH lf
d−i(X)→ Q

7.2 Sheaf-theoretic approach to intersection homology

(We continue following [KW]).

Let us fix a topological pseudomanifold X with a toplogical stratification defined by X0 ⊂ X1 ⊂
. . . Xn−2 = Xn−1 ⊂ Xn = X.

We define the Borel-Moore complex of sheaves S•X by

S−iX (U) = C lfi (U)

The restriction map for V ⊂ U is defined as follows: Given an i-simplex σ with im(σ) ⊂ U ,
define a set J of i-simplices in V as follows: If im(σ) ⊂ V , then J = {σ}; otherwise performa
barycentric subdivision of σ. If τ is an i-simplex in the subdivision with im(τ) ⊂ V then add τ
to J . Further subdivide those i-simplices in the subdivision with im(τ) 6⊂ V and repeat.
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It is a straightforward exercise to check that this gives a well-defined restriction map from locally
finite chains in U to locally finite chains in V . Furthermore, the restriction map is compatible
with the boundary map. Finally, one can check that we get a complex of sheves S•X (i.e. gluing
axiom is satisfied.)

The same construction works verbatim for intersection chains. A locally finite singular i-chain
ξ is in the subspace IpS−iX (U) if it is p-allowable.

Note that we worked with Borel-Moore chains to have a well-defined restriction map. Given U ,
we can identify Borel-Moore intersection chains, IpC lfi (U), with the global sections Γ(U ; IpS−iX ).
On the other hand, the sections with compact supports Γc(UlI

pS−iX ) recovers the intersection
chains IpCi(U) on U .

We next will show that both S•X and IpS•X have vanishing higher cohomology. For this recall
the following definition:
Definition 7.15. A sheaf S on X is soft if for every closed subset A ⊂ X, the restriction map
S(X)→ S(A) is surjective, where S(A) is, by definition, colimA⊂US(U).

A sheaf S on X is c-soft if for every compact subset K ⊂ X, the restriction map S(X)→ S(K)
is surjective.

For locally compact and countable at infinity topological spaces, for ex. a topological pseu-
domanifold, the notion of soft and c-soft sheaves agree. Furthermore, it is well-known from
homological algebra that soft sheaves have vanishing higher cohomology.
Lemma 7.16. For any i ≤ 0, the sheaves SiX and IpSiX are soft. Hence, in particular, we have
Hk(X;SiX) = 0 = Hk(X; IpSiX) for k > 0.

Proof. Let K ⊂ X compact and suppose ξ ∈ SiX(K). We can represent ξ by a locally finite
singular chain η ∈ SiX(U) for some open neighborhood U of K. Note that η does not have to
be a locally finite singular chain in X (its simplices may accumulate at a boundary point of
U). Now, every point x ∈ K, has a neighborhood Vx which meets only finitely many singular
simplices of η. Take a finite subcover of the cover of K formed by Vx. There are finitely many
simplices of η meeting this open cover. So, we pose η̃ =

∑
akσk ∈ SiX(U) where σk are the

simplices of η that intersect K. Note that this is a finite sum. Hence, we can view η̃ ∈ SiX(X)
and this clearly restricts to ξ ∈ S)iX(K) as required.

The same proof applies verbatim to IpSiX when intersection conditions are imposed.

For a complex of sheaves S• on X with vanishing higher cohomology, a completely standard spec-
tral sequence argument gives that there is a quasi-isomorphism between the hypercohomology
complex of S• and the complex Γ(X;S•) of global sections. Hence, we conclude that:

Hk(Rf∗(S•)) = Hk(X;S•)

where f : X → {pt.} is the constant map, whose pushforward is the glocal sections functor Γ.
In particular, the hypercohomology of S∗X computes the Borel-Moore homology of X, and the
hypercohomology of IpS•X computes the Borel-Moore intersection homology.
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The same argument applies for the compactly supported push-forward f!. Then, we get

Hi(X) = H−i(Rf!S•X) and IpHi(X) = H−i(Rf!I
pS•X)

Therefore, the complex of sheaves IpS• is now the main concentration. It turns that these sheaves
have a very nice characterization inside the the derived category of constructible sheaves on X,
which we wrote as Db

c(X) before (where the contructibility here is with respect to the given
stratification on X).
Theorem 7.17. (Goresky-MacPherson) Up to canonical isomoprhism in the contructible bounded
derived category Db

c(X) (w.r.t to the given stratification on X), there is a unique complex of
sheaves F• which satisfies:

• For any x ∈ X, the stalk cohomology H i(j∗xF•) = 0 for i < −n, (where jx : {x} → X is
the inclusion.)

• For any x ∈ X rXn−2, the stalk cohomology H i(j∗xF•) = K for i = −n and 0 otherwise.
Furthermore, the −n-th stalk cohomology forms a local system.

• For any x ∈ Xn−k rXn−k−1, the i-th stalk H i(j∗xF) = 0 for i > p(k)− n.

• For any x ∈ Xn−k rXn−k−1, the i-th costalk H i(j!
xF) = 0 for i < −q(k). where p(k) +

q(k) = k − 2.

Furthermore, the intersection homology sheaves IpS•X satisfies these axioms.

7.3 Deligne’s construction

Suppose we have a fixed filtration X = Xn ⊃ Xn−2 ⊃ . . . ⊃ X0 by closed subset of X. Let

ik : X −Xn−k → X −Xn−k−1

denote the inclusions.

If F• is a complex of sheaves on X and r ∈ Z , we define the truncated complex τ≤rF• to be
the complex such that: τ≤rF i = F i for i < r,

τ≤rFr = ker(d : Fr → Fr+1)

and τ≤rF i = 0 for i > r.
Theorem 7.18. Suppose the filtration on X comes from a topological stratification of a pseu-
domanifold, then the complex of sheaves:

P• = τ≤p(n)−nR(in)∗ . . . τ≤p(2)−nR(i2)∗CX−Xn−2 [n]

satisfies the properties listed above. In particular, it is isomorphic to the intersection homology
sheaves IpS•X .
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Teh above definition also gives us an easy way of construction intersection homology sheaves
on X which extend a local system on X r Xn−2. Given a local system L on X r Xn−2, one
poses:

IpS•(X,L) = τ≤p(n)−nR(in)∗ . . . τ≤p(2)−nR(i2)∗CX−Xn−2 [n]

Of course, one can also give an interpretation of this sheaf in terms of singular chain complex
with twisted coefficients given in the local system. One just has to note that it suffices to give
the local system only on X rXn−2, since the allowability conditions on singular chains forces
that interior of any singular chain maps to X rXn−2.

7.4 Verdier duality

Recall that Sh(X) stands for the category of sheaves of C-vector spaces, and S•X is a complex of
sheaves of singular chains with compact support. We define the Verdier duality (contravariant)
functor:

DX : Db(Sh(X))→ Db(Sh(X))

given by
F → RHomSh(X)(F ,S•X)

where RHom is the right derived functor of the left exact functor F → HomSh(X)(F ,S•X).

Duality functor satisfies the following properties:

• DX takes distinguished triangles to distinguished triangles and DX(F•[1]) = (DXF•)[−1]

• When X = pt., then DptV
• is the complex with (V −i)∨ in degree i, and the differentials

are duals of the differentials of V •.

• There is a natural map F• → D2F• which is an isomorphism if F• has constructible
cohomology.

• For U open in X, DU (F•|U ) = (DXF•)|U .

• For any continuous map f : X → Y , and F• in Db(Sh(X)), there is a natural isomorpshim:

DYRf∗F• ∼= Rf!DXF•

• Verdier duality preserves cohomological constructibility. Given a topological stratification
of X, we have a duality functor DX : Db

c(X)→ Db
c(X)

Exercise: Let f : X → {pt.} be the constant map U ⊂ X open and F• a complex of sheaves.
Then, we can compute:

H i(U ;DXF•) = H i(R(f|U )∗F•) ∼= H i(DptR(f|U )!F•) = H−i(R(fU )!F•)∨ ∼= H−ic (U ;F•)∨

An important consequence is that, if p and q are complementary perversities, then, we have a
canonical isomorphism:

IqS•X ∼= DXI
pS•X [n]
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In particular, taking cohomology, we get:

IqHi(X) ∼= IpH lf
n−i(X)∨

Hence, Poincaré duality in interection homology is a consequence of Verdier duality.

We would also like to note that Verdier duality relates the derived pull-back and push-forward
maps associated to a map f : X → Y by the following formulae:

f! = DY f∗DX , f ! = DXf
∗DY

7.5 Perverse sheaves

Let X be a topologically stratified pseudomanifold. For simplicity, let us assume that all strata
of X are even-dimensional (for ex. take any complex quasi-projective variety). Furthermore, let
us concentrate in the case of the middle perversity, which has p(2k) = k− 1. Then, the last two
conditions in the characterizasion theorem of Goresk-Macpherson say become:

H i(j∗xI
pS•X) = 0 for i > (−dimS − dimX)/2

H i(j!
xI
pS•X) = 0 for i < (dimS − dimX)/2

where x is a point in a stratum S of codimension > 0.

Relaxing the strict inequality to allow equality leads to the notion of perverse sheaf:
Definition 7.19. A complex of constructible sheaves F• ∈ Db

c(X) is a perverse sheaf if

H i(j∗xF•) = 0 for i ≥ (−dimS)/2

H i(j!
xF•) = 0 for i ≤ dimS/2

for all x ∈ X (including S = X rXn−2).

In particular, we have that IpS•X [−dimX/2] is a perverse sheaf.

The following fundamental results are due to Beilinson-Bernstein-Deligne:
Theorem 7.20. The category of perverse sheaves P (X) is a Abelian. The Verdier duality
functor DX preserves the perverse sheaves. In fact, it is an exact contravariant functor.

The category P (X) is Artinian and Noetherian. Every perverse sheaf F•, has a finite length
composition series:

0 ↪→ F•0 ↪→ F•1 · · · ↪→ F•n = F•

for which the quotients F•i /F•i−1 are simple perverse sheaves, and the maximal length of any
such composition series for F• is finite.

Furthermore, any simple perverse sheaf has the form IpS•Y,L[−s] where Y is the closure of a
connected stratum S of dimension 2s and L is an irreducibled local system on S.
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We next discuss the notion of small and semi-small maps. Suppose f : X → Y is a proper
surjective map of varieties with X nonsingular. We say that a topological stratification Y =⊔
k Sk into locally closed subvarities is a stratification relative to f if f : f−1(Sk) → Sk is a

topologically trivial fibration.

It turns out that the following conditions are equivalent.

• Rf∗CX [dimX] is a perverse sheaf on Y ,

• dimX ×Y X ≤ dimX,

• dimSk + 2(dimf−1(Sk)− dimSk) ≤ dimX for all k.

We say that f is semismall if any of the above conditions hold and small if the inequality in the
last condition is strict for all strata Sk which are not dense in Y . Call a stratum relevant if
equality holds.

If f is small, then RfCX [n] = ImH(Y,L) , where K = (Rf∗CX)|Y0 is the restriction of the
(derived) push-forward to the open stratum.

For small and semismall maps, the Decomposition theorem takes on the following especially nice
form.
Theorem 7.21. (Decomposition theorem). If f : X → Y is semismall, then

Rf∗CX [dimX] =
⊕
α

ImS•(Sk,Lk)

where the sum is over relevant strata Sk and local systems Lk on Sk (and m signifies the middle
perversity.)

Finally, let us mention that it is easy to see from what we have proved that the Springer map
µ : Ñ → N is a semi-small resolution. This gives us the Springer decomposition :

Rµ∗CÑ [dimN ] =
⊕

χ∈π1(O(x))

ImS•(Ox,Lχ)⊗ V(x,χ)

To put this into context, we note that it can be shown by a diagram chase and Verdier duality
that

End(Rµ∗CÑ , Rµ∗CÑ ) ∼= H lf
top(Z)

where Z is the Steinberg variety. Namely, since ImS•(Ox,Lχ) are simple objects in the abelian
category of perverse sheaves,

Hom(ImS•(Ox,Lχ), ImS•(Ox′ ,Lχ′)) = 0

unless x = x′ and χ = χ′ in which case it is C.

On the other hand, for a fixed O (equivalently x ∈ O), we can see thatH lf
top(Bx) =

⊕
χCχ⊗V(x,χ),

by computing the stalks:
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H−dimO(Bx,CBx [dimN ]) = H−dimO(RµCÑ [dimN ]) =
⊕

(ImS•(O,Lχ⊗V(x,χ)))x =
⊕

Cχ⊗Vξ,χ

On the other hand,

H lf
top(Bx) = H−2dimCBx(Bx, i

!
xCÑ [2dimN ])) = H−dimO(Bx,CBx [dimN ])

where ix : Bx → Ñ is the inclusion, and we used the fact that i!x = i∗x[−2dimO] because Bx → O
is a fibration.

In other words, taking the self-endomorphism of the perverse sheaf µ∗CÑ reproduces for us the
isomorphism:

C[W ] =
⊕
x,χ

EndC(H lf
top(Bx)χ)

that we saw earlier in the course.

Finally, let us end with mentioning that the geometric W -action can also be reconstructed this
way on the Springer sheaf Rµ∗CÑ , by applying the specialization construction but we shall
stop here. Time to take a break and digest what we have covered. . .
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