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Lattices

Here are two equivalent definitions of a lattice.

▶ A lattice in Rn is an infinite set of points with an arrangement
and orientation that appears exactly the same, from whichever
of the points of the set is viewed.

▶ A lattice consists of all points with position vectors of the form

m1v1 +m2v2 + . . .+mnvn

where v1, v2, . . . , vn are any linearly independent vectors in
Rn, and m1,m2, . . . ,mn range through all integer values.

Think of a lattice as a grid of points in space, like the arrangement
of atoms in a crystal or the pattern of tiles on a floor.



Example 2D Lattice

v1

v2

The vectors v1 and v2 define the basis of the lattice. All other
points are generated by integer combinations of these vectors.



3D Cubic Lattice

v1

v2

v3

The vectors v1, v2, and v3 define the basis of the 3D cubic lattice.
Each point is generated by integer combinations of these vectors.



Cubic space division by M. C. Escher.

M.C. Escher’s artwork often explores the concept of symmetry and
tiling, making it a perfect visual representation of lattices.



A friendship

H. S. M. Coxeter (1907 – 2003) was a British-Canadian
mathematician. He is regarded as one of the greatest geometers of
the 20th century.

It is not surprising that Coxeter was a great friend and admirer of
the Dutch graphic artist M.C. Escher. ”Escher did it by instinct,”
Coxeter explained. ”I did it by trigonometry.”



Lattices in Chemistry

The atoms of a crystal are arranged in space in a discrete and
extremely symmetrical way.

Microscopic structure of table salt. Purple is sodium ion Na+, green is
chlorine ion Cl−.

The arrangement of sodium and chlorine ions in table salt forms a
cubic lattice, which is a common structure in many crystals.



Symmetries

An isometry is a mapping of σ : Rn → Rn onto itself preserving all
distances.

∥σ(x)− σ(y)∥ = ∥x − y∥ ∀x , y ∈ Rn

Translation Rotation

Reflection Glide Reflection

Theorem: Every isometry of R2 is of one of the above four types.

Proof: Elementary (cf. Martin - Transformation Geometry).



Group of Isometries of Rn

▶ Every isometry of Rn can be described by a pair σ = (A, v)
consisting of a n-dimensional orthogonal matrix A ∈ O(n) and
a n-dimensional vector v so that

σ(x) = Ax + v

▶ We can compose isometries (A, v) and (B,w) as follows:

(A, v) ◦ (B,w) = (AB,Aw + v).

▶ Isom(Rn), the set of isometries of Rn, is a group.



What are Crystallographic Groups?

A crystal is a lattice together with a “basis”1 at each lattice point.

A crystallographic group G ⊂ Isom(Rn) is the group of symmetries
of a crystal, that is the set of all possible way you can move a
crystal (rotate, translate, reflect) and still have it look the same.

1such as an atom or molecule or a motif



A mathematically precise definition

A n-dimensional crystallographic group G consists of isometries
such that

1. any bounded region contains at most finitely many G -images
of a given point,

2. the G -images of some bounded region cover all of Rn.

Equivalently, we require that G ⊂ Isom(Rn) is a subgroup such
that each orbit G · x = {gx ∈ Rn : g ∈ G} is a discrete subset of
Rn and the orbit space Rn/G is a compact space.

Exercise: Let gi = (Ai , vi ) for i = 1, 2 be given by

A1 =

[
1 0
0 −1

]
, v1 =

[
1/2
0

]
, A2 =

[
1 0
0 1

]
v2 =

[
0
1

]
Show that the subgroup G = ⟨g1, g2⟩ ⊂ Isom(R2) generated by
g1, g2 is a crystallographic group, and describe the orbit space.



2-d Crystallographic Groups = Wallpaper Groups
Familiar as symmetry groups of tilings of the plane.

A collection of floor ornaments found in the San Marco Cathedral in
Venice (Reference: Mehmet Erbudak)



Point groups and Translation groups

For a crystallographic group G , we have a group homomorphism

ρ : G → O(n)

(A, v) 7→ A

▶ The subgroup of ρ(G ) ⊂ O(n) is called the point group.

▶ The kernel of ρ is called the the translation group T (G ).

Equivalently, there is an exact sequence of groups

0 → T (G ) → G → ρ(G ) → 0



Classification

Theorem (Bieberbach)

For a crystallographic group G ⊂ Isom(Rn), we have T (G ) ≃ Zn

and ρ(G ) is finite.

In particular, for any crystallographic group there exists a lattice
(formed by a single orbit of T (G )) and G preserves this lattice.
Thus, classification of crystallographic groups are understood in
two steps:

▶ What is the underlying lattice, called the Bravais lattice,
associated to G?

▶ What are the finite subgroups of the orthogonal group that
preserve the given lattice?



Key Restriction

Only certain rotational symmetries are allowed in 2D and 3D
lattices. Allowed orders: 1, 2, 3, 4, and 6.

Rk = I ⇒ k = 1, 2, 3, 4, 6

Proof: If R is a rotational symmetry that preserves a lattice, then
the matrix entries of R with respect to the basis of lattices vectors
are integers, so Tr(R) ∈ Z. Because the trace is invariant under a
change of basis

Tr

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 = 1 + 2 cos θ ∈ Z



Classification in 2d
In dimension two, there are exactly 5 types of Bravais lattices

The corresponding point groups are:

(a)C1,C2,C3,C6,D1,D2,D3,D6 hexagonal,

(b)C1,C2,C4,D1,D2,D4 square,

(c)C1,C2,D1,D2 rectangular,

(d)C1,C2,D1,D2 rhombic,

(e)C1,C2 general.



Classification in 2d

There are exactly 17 two-dimensional wallpaper groups.

Picture from M. Artin - Algebra



Higher dimensions

In dimension three, there are 230 three-dimensional crystallographic
groups (14 Bravais lattices and 32 distinct point groups).
The exact number in higher dimensions is unknown but Bierbach
also proved that in each dimension there are finitely many.

Dimension Number of Crystallographic Groups
1D 2
2D 17
3D 230
4D 4894
5D 222097



Tilings

Given a lattice in R2, we can obtain a tiling of R2 by translating a
“primitive unit cell” (Wigner-Seitz cell).

Several possible choices of primitive cell for a single two-dimensional
lattice. (Reference: Ashcroft & Mermin)

These give us periodic tilings.



Tilings
A plane tiling is a countable family of closed set {T1,T2, . . .}
which cover the plane without gaps and tiles do not overlap except
along boundaries.

A tiling is called periodic if it has translational symmetry. A tiling
that cannot be constructed from a single primitive cell is called
nonperiodic.

A nonperiodic tiling



Aperiodic tilings

If a given set of tiles allows only nonperiodic tilings, then this set
of tiles is called aperiodic. The tilings obtained from an aperiodic
set of tiles are often called aperiodic tilings, though strictly
speaking it is the tiles themselves that are aperiodic.



Penrose tilings

Penrose tilings are aperiodic. They never repeat exactly the same
pattern, despite being highly ordered.



Aperiodic Monotiles: The Einstein
Breakthrough (2023): Mathematicians2 discovered the first
aperiodic monotile, nicknamed the Einstein tile (from the
German ”ein Stein” meaning ”one stone”).

▶ A single tile shape that can tile the plane only
non-periodically. No repeating pattern exists, yet the tiling
covers the plane without gaps or overlaps.

▶ The tile is a polygon with 13 sides (a ”hat” shape).

▶ The tiling exhibits quasicrystalline symmetry, similar to
Penrose tilings.

2Smith–Myers–Kaplan–Goodman-Strauss



Possible directions to explore for projects:

▶ Classification of crystallographic groups in dimension 2 (with
proofs).

▶ Proof of Bieberbach theorem.

▶ Penrose’s aperiodic tilings (expository).

▶ Aperiodic Einstein tilings (expository).

▶ The physics behind aperiodic tilings: Quasicrystals
(expository)

▶ Classification of Frieze Groups. (with proofs)

▶ Describe the quotient spaces (orbifolds) R2/G for the 17
crystallographic groups G .

▶ I’d be glad to hear from anyone (via email) who has another
project idea in mind that relates to lattices and tilings.
However, please check with me first to ensure that I consider
the project to be at an appropriate level before you begin
working on it seriously.



References:

▶ George E. Martin - Transformation Geometry (1982, Springer)
(just the right level)

▶ Colin Adams - The tiling book (2023, AMS) (just the right
level, pretty pictures!)

▶ Andrzej Szczepański - Geometry of Crystallographic Groups
(2012, World Scientific)

▶ Francesco D’Andrea - A Guide to Penrose Tilings (2023,
Springer)

▶ José M. Montesinos - Classical Tesselations and
Three-Manifolds (1985, Springer) (somewhat advanced)

▶ B. Grünbaum & G. C. Shephard - Tilings and Patterns (1986,
Freeman) (encyclopedic and includes many pictures and
further references for inspiration)



Youtube videos (just for some distraction):

▶ Dr. Trefor Bazett - The Beauty of Symmetry: An
Introduction to the Wallpaper Group

▶ minutephysics - Why Penrose Tiles Never Repeat

▶ Numberphile - A New Tile in Newtyle

A tiling database: https://tilingsearch.mit.edu/

17 wallpaper groups among traditional Japanese patterns:
https://www.ms.u-tokyo.ac.jp/~tsuboi/urabe/public_

html/pattrn/PatternE.html

https://tilingsearch.mit.edu/
https://www.ms.u-tokyo.ac.jp/~tsuboi/urabe/public_html/pattrn/PatternE.html
https://www.ms.u-tokyo.ac.jp/~tsuboi/urabe/public_html/pattrn/PatternE.html


Thanks for listening!
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