Atiyah-Singer Index theorem

1 K-theory

1.1 Topological K-theory

Let X be a compact smooth manifold. The set of (isomorpism classes of)
smooth C-vector bundles over X is a monoid with respect to the direct sum
operation @, which we shall refer to as Vec(X). Vec(X) also has the tensor
product operation ®. In topological K-theory we add formal inverses
to form an abelian group K(X). We will start with some of the algebra
underpinning this.

Theorem 1.1. (Adding Formal Inverses)

Let A be a semi-group, there is a canonically defined abelian group B,
such that A — B as a semi-group. Define B = A x A/ ~, where (FEy, Vi) ~
(Eo, Va) means that there exists G,G' such that (E1 & G,V; ® G) = (Ey &
G Vo G).

We usually write (F, F') = E—F. For A = Vec(X) adding formal inverses
gives a ring K(X) (see exercise).

Exercise 1.2. 1. Check that if the vector bundles E1 ® Fy and Ey & Fy
are isomorphic, then indeed Ey — Fy = Ey — Fy in K(X).

2. Show that tensor ® passes to the group K(X) making it into a ring.

Example 1.3. A point and the circle. K(Pt) = Z. This isomorphism is
giwven by the rank of a trivial vector bundle. Similarly K(S') = Z since every
C-vector bundle on S* is trivial (Gl,(C) is connected).

Example 1.4. The sphere. K(CP') = Z[H]/(1 — H)?>. Where H is the
K-theory class of the vector bundle O(1).



e The relation (1 — H)? = 0 can be seen from the Euler sequence :

0-0—-01)a0(1)—0(2) =0

[A geometric interpretation of this exact sequence is to consider the
middle term as 1-homogeneous vector fields on C? \ 0, which turn out
to be in bijection with sections of O(1) ® C* = O(1) & O(1) (The key
observation is that (smooth) sections of O(1) are in bijection with 1-
homogeneous functions on C?\ 0).The final term O(2) is isomorphic to
the tangent bundle of CP!, the second map is push-forward of vector
fields along the map C? \ {0} — CP']. From this we see K(O(1) ®
O(1)) = K(0)+ K(0(2)).

e To see the above relation from an algebraic geometry perspective, for
p € CP' consider the short exact sequence of sheaves:

0-0—-01)—0,—0

[Here O, is the (skyscraper) sheaf defined to assign C to an open set
containing p and 0 otherwise. Thinking of O(1) as the sheaf of holo-
morphic functions with a pole of order 1 at p, The quotient O(1)/O
will vanish away from p and at p we will be the sheaf given by the
co-efficient of the order —1 term, which is Op. For p # ¢ the stalk of
O, at g is O and vice versa, we have that O, ® O, = 0 showing that
(H —1)2.

Exercise 1.5. Using the Whitney sum formula show that we can extend
Chern classes to K(X), by c.(E — F) =c.(E)/c.(F)

In addition to Chern classes of a vector bundle we may also define a
Chern Character, which is closely related and gives a ring homomorphism
from the K-theory ring to the cohomology ring of X. [The definition for line
bundles is easy to state, let L be a line bundle and let x = ¢; € H*(X,Z)
its first Chern class. Then the chern character of L is defined by the formal
sum:

1 1
ch(L)=¢€e" =1+ §x+ §x3+ .. € H*(X,Q)

Define ch(L1 ®...® Ly) = >_ ch(L;), now it is clear how to extend the chern

character to general vector bundles by appealing to the splitting principle].
There is a ring homomorphism ch: K(X)® Q — H*(X, Q).
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The following definition is needed to talk about the Bott periodicity the-
orem. The restriction homomorphism R : K(X) — K(pt) simply counts the
dimension of vector bundle classes and extends linearly to K (X). Define the
Reduced K-theory of X to be K(X) = ker(R) i.e. the K-theory classes
generated by F — F where Rank(E) = Rank(F'). We may apply this to our
previous examples:

The map K(S') — Z is clearly an isomorphism hence K (S') = 0. One
can also see that K (S?) = Z(H — 1), the generator b= H —1 = [O(1)] — [O]
is called the Bott Class and appears in the statement of the periodicity
theorem.

1.2 Compactly supported K-theory and the Periodic-
ity theorem

Suppose now that X is a locally compact space. Let X* = X U {oo} be the
one point compactification of X. We have again a restriction i, : K(X) —

K ({o0}).

Definition 1.6. The K-theory with compact support of X is the re-
duced K-theory of the one point compactification X . K(X) = K(X T, {oc0}) =
Ker(iy).

[Before reading the statement of the p-theorem it is helpful to note that
in K-theory (with compact support) there is an outer product X : K(X) x
K(Y) = K(X xY). At the level of vector bundles this amounts to forming
the vector bundle with fibre £, ® F), over the point (z,y)]

With this in mind recall the generator b = H — 1 of K(5?%) = K(R?).

Theorem 1.7. The Periodicity Theorem. For a locally compact space the
map o : K(X) = K(X x R?), A~ AXb is an isomorphism.

This reduces the problem of computing the reduced k-theory of spheres
of any dimension to just S and S%. We compute: K(S*11) = K(R*+%) =

K(R)) = K(5") =0,Z fori =1,2.

2 Fredholm Operators

One way of obtaining K-theory classes is to take a 2-term complex of vector
bundles .
El — E2
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we get get a K-theory class [Ey] — [Ey] = [ker(d)] — [Im(d)]. In fact all K-
theory classes occur like this if we allow E; to be infinite dimensional. This
motivates the study of Fredholm operators.

Fix V to be a separable Hilbert space over C. [A vector space V' with an
inner product that induces a complete metric on V].

Definition 2.1. Let T : V — V be a bounded linear map (the image of the
unit ball is bounded).

1. We say that T is Fredholm if both Ker(T) and Coker(T) are finite
dimensional.

2. The index of a Fredolm operator T is defined index(T) = dim(Ker(T))—
dim(Coker(T)).

3. F ={ Fredholm operators : V. — V'}.

Example 2.2. Consider the Hilbert space L*(Zy) = {(aop,ai,...) € C* :
S lai|* < oo}. The maps

T : (ag,ay,...) = (0,ap, a4, ...)

T_1 : (ao,al, ) = (al,aQ, )

have index —1,1 respectively.

In fact Index(T™) = n ¥n € Z T~! is a left inverse of T. The operator
T —T7™T™ is the finite rank operator:

(ag,ai,...) = (ag, a1, ..., an_1,0,...)

2.1 Constructing Index bundles

The theory of Fredholm operators is closely related to K-theory: Suppose
that we had a smoothly varying family of Fredholm operators T, over a
compact, connected space X. Then such a family gives a K-theory class in
X, and all K-theory classes arise in this way.

Definition/Theorem 2.3. Let f : X — F be a family of Fredholm operators
{T,}. Then we may associate a canonically defined K-theory class Ind(T') €
K(X).



Proof. The map Index : F — 7 is continuous so Ind(T,) = dim(Ker(T,))—
dim(Coker(T,)) is constant. In the simplified situation where dim(Ker(T}))
and hence dim(Coker(T,)) are also constant we can give an explicit descrip-
tion of the index bundles.

E = |_| Ker(T,), F = |_| Coker(T;)

reX zeX

inherit the structure of vector bundles from the family. Define Ind(T) =
E—F.

Now for the general situation consider the map H, : (ag, a1, ...) > (0, ..., ap, ...

(assuming for simplicity that V = L*(Z,)). Fredholm operators are invert-
ible up to compact operators, so for each x € X IN : Im(HNT,) = Im(Hy).
By compactness of X there is a global choice of N that works for all x. Now
the family { Hy7,} has Cokernel of constant dimension so apply the above
construction. [HARD BIT: prove this is independent of n]. O

Exercise 2.4. Show that all K(X) classes arise this way by considering the
sequence
0— Ker — L*(E) - E — 0.

[Here L?(E) is the trivial vector bundle of L? sections of E. The second map
is (x,8) — s(z)/

Example 2.5. Fredholm operators and winding numbers.

Let V = L%(S") be the space of square integrable (complex) functions on
S, All such functions have a Fourier series

f(z) = Z a2

Define the Hardy space H? to be the subspace of functions with a; = 0 for
all k£ < 0.

Let g : S' — C be a continuous function. Define an operator T, : H? —
H?. Note that for f € L* f*g € L* Define Ty(g) to be the projection of
f * g to H? by killing the negative Fourier coefficients.

T, is Fredholm < Im(g) C C*. The nice fact about these Fredholm
operators is that the index is the winding number of g around 0.
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3 The Atiyah-Singer Index formula (INCOM-
PLETE)

[Let E,F be vector bundles of rank m and n respectively over X a manifold of
dimension k. A a rank k differential operator is a map D : I'(F) — I'(F)
satisfying the following: About each point choose an open set such that E
and F' are trivial. s € I'(E) and Ds € I'(F') may be expressed locally as
s:U—=R"™ Ds:U — R". We say that D is a differential operator of order
k if locally Ds = As where A is a matrix with coefficients of the form:

and 7 < k.

Example 3.1. e The Laplace operator. A = > aa—; acting on complex
functions is a differential operator of degree 2.

o The exterior derivative. d : QP — QP is a differential operator of
degree 1 (exercise).]

Suppose that D is a differential operator of degree k. Now for each 1-
form w # 0 we define o(D)(w) € Hom(E,F) called the symbol of D.
This measures the top-order behaviour of the operator and may be described
locally:

We form a new matrix A” from A above by forgetting all differentials of
order < p, now write the 1-form w in local coordinates w(p) = (v1, ..., vg).
Replace each differential 2_ in the matrix AP with v; € R. This matrix
gives a linear map £, — V,, and globally we have a bundle homomorphism
o(D)(w) € Hom(E, F) which is called the symbol.

Example 3.2. Consider the cotangent bundle m: T% \ 0 — X, we may pull
back the bundles to obtain 7 (F),7*(F). Rearrange the above to show that
the symbol can be expressed as a bundle morphism o(D) : m*(E) — 7*(F).

Definition 3.3. D is called an Elliptic operator if o(D)(w) is a bundle iso-
morphism for all w € Q% \ 0.

Example 3.4. For the Exterior derivative we may check that o(d)(a) : QF —
Q=5 an-



By computing the rank of Q* we see that this can’t be an isomorphism in
all but the most trivial cases, therefore d is not an elliptic operator. Define
d*: QL — QF by

of
&Ei

dzy..dx;...dz,

fdzy...dx, — Z

. Then d* is the formal adjoint of d. Ker(d) = coker(d*) and coker(d) =
ker(d*), and d4+d* : Q* — Q* is an elliptic operator (this is seen by computing
the symbol: o(d + d*)(a)(-) = a A -+ a-). Note that (d + d*)(Q**) C Q>+,
restricting the operator in this way Ker(d+d*) = @H*(X), Coker(d+d*) =
@H2*+1 (X) .

It turns out that an elliptic complex is always a Fredholm operator
(I(E),T'(F) considered as trivial bundles over X) and we see in this case
Index(D) = >_ dim(H*) — > dim(H**) = e(X) (exercise).

Elliptic operators are invertible up to lower order operators. Using the
compact Rellich lemma (which states that L — L? | is a compact embed-
ding) shows that

LX(E) 2 12(F)

is Fredholm. Index(D) depends only on the homotopy class of the map
Tx\0— Iso(E,F) given w + o(D)(w) and can provide information about
the topology of X.

Consider 7*(E) — n*(F') € K(T*(X)). Subtracting p*(F') to get a class
& e K(X).

We may embed X «— Nx <— R". Suppose that Nx was trivial Nx =
X X R™ (m = codim(X)).

Now there exists an operator on the trivial bundle R x C over R. Whose
symbol over T*R = R? gives the Bott class b € K(R?). We want to form

DB B ¢ K(T*X x R*™) = K(T*(Nyx)).



