
Atiyah-Singer Index theorem

1 K-theory

1.1 Topological K-theory

Let X be a compact smooth manifold. The set of (isomorpism classes of)
smooth C-vector bundles over X is a monoid with respect to the direct sum
operation ⊕, which we shall refer to as Vec(X). V ec(X) also has the tensor
product operation ⊗. In topological K-theory we add formal inverses
to form an abelian group K(X). We will start with some of the algebra
underpinning this.

Theorem 1.1. (Adding Formal Inverses)
Let A be a semi-group, there is a canonically defined abelian group B,

such that A ↪→ B as a semi-group. Define B = A× A/ ∼, where (E1, V1) ∼
(E2, V2) means that there exists G,G′ such that (E1 ⊕ G, V1 ⊕ G) = (E2 ⊕
G′, V2 ⊕G′).

We usually write (E,F ) = E−F . For A = V ec(X) adding formal inverses
gives a ring K(X) (see exercise).

Exercise 1.2. 1. Check that if the vector bundles E1 ⊕ F2 and E2 ⊕ F1

are isomorphic, then indeed E1 − F1 = E2 − F2 in K(X).

2. Show that tensor ⊗ passes to the group K(X) making it into a ring.

Example 1.3. A point and the circle. K(Pt) ∼= Z. This isomorphism is
given by the rank of a trivial vector bundle. Similarly K(S1) = Z since every
C-vector bundle on S1 is trivial (Gln(C) is connected).

Example 1.4. The sphere. K(CP1) = Z[H]/(1 − H)2. Where H is the
K-theory class of the vector bundle O(1).
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• The relation (1−H)2 = 0 can be seen from the Euler sequence :

0→ O → O(1)⊕O(1)→ O(2)→ 0

[A geometric interpretation of this exact sequence is to consider the
middle term as 1-homogeneous vector fields on C2 \ 0, which turn out
to be in bijection with sections of O(1)⊗ C2 = O(1)⊕O(1) (The key
observation is that (smooth) sections of O(1) are in bijection with 1-
homogeneous functions on C2 \ 0).The final term O(2) is isomorphic to
the tangent bundle of CP1, the second map is push-forward of vector
fields along the map C2 \ {0} → CP1]. From this we see K(O(1) ⊕
O(1)) = K(O) +K(O(2)).

• To see the above relation from an algebraic geometry perspective, for
p ∈ CP1 consider the short exact sequence of sheaves:

0→ O → O(1)→ Op → 0

[Here Op is the (skyscraper) sheaf defined to assign C to an open set
containing p and 0 otherwise. Thinking of O(1) as the sheaf of holo-
morphic functions with a pole of order 1 at p, The quotient O(1)/O
will vanish away from p and at p we will be the sheaf given by the
co-efficient of the order −1 term, which is OP . For p 6= q the stalk of
Op at q is O and vice versa, we have that Op ⊗ Oq = 0 showing that
(H − 1)2].

Exercise 1.5. Using the Whitney sum formula show that we can extend
Chern classes to K(X), by c·(E − F ) = c·(E)/c·(F )

In addition to Chern classes of a vector bundle we may also define a
Chern Character, which is closely related and gives a ring homomorphism
from the K-theory ring to the cohomology ring of X. [The definition for line
bundles is easy to state, let L be a line bundle and let x = c1 ∈ H2(X,Z)
its first Chern class. Then the chern character of L is defined by the formal
sum:

ch(L) = ex = 1 +
1

2!
x+

1

3!
x3 + ... ∈ H2∗(X,Q)

Define ch(L1⊕ ...⊕LN) =
∑
ch(Li), now it is clear how to extend the chern

character to general vector bundles by appealing to the splitting principle].
There is a ring homomorphism ch : K(X)⊗Q→ H2∗(X,Q).
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The following definition is needed to talk about the Bott periodicity the-
orem. The restriction homomorphism R : K(X)→ K(pt) simply counts the
dimension of vector bundle classes and extends linearly to K(X). Define the
Reduced K-theory of X to be K̃(X) = ker(R) i.e. the K-theory classes
generated by E − F where Rank(E) = Rank(F ). We may apply this to our
previous examples:

The map K(S1) → Z is clearly an isomorphism hence K̃(S1) = 0. One
can also see that K̃(S2) = Z(H−1), the generator b = H−1 = [O(1)]− [O]
is called the Bott Class and appears in the statement of the periodicity
theorem.

1.2 Compactly supported K-theory and the Periodic-
ity theorem

Suppose now that X is a locally compact space. Let X+ = X ∪ {∞} be the
one point compactification of X. We have again a restriction i? : K(X+)→
K({∞}).
Definition 1.6. The K-theory with compact support of X is the re-
duced K-theory of the one point compactification X+. K̃(X) = K̃(X+, {∞}) =
Ker(i?).

[Before reading the statement of the p-theorem it is helpful to note that
in K-theory (with compact support) there is an outer product � : K(X)×
K(Y )→ K(X × Y ). At the level of vector bundles this amounts to forming
the vector bundle with fibre Ex ⊗ Fy over the point (x, y)]

With this in mind recall the generator b = H − 1 of K(S2) = K(R2).

Theorem 1.7. The Periodicity Theorem. For a locally compact space the
map α : K̃(X)→ K̃(X × R2), A 7→ A� b is an isomorphism.

This reduces the problem of computing the reduced k-theory of spheres
of any dimension to just S1 and S2. We compute: K̃(S2k+i) = K̃(R2k+i) =
K̃(Ri) = K̃(Si) = 0,Z for i = 1, 2.

2 Fredholm Operators

One way of obtaining K-theory classes is to take a 2-term complex of vector
bundles

E1
d−→ E2
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we get get a K-theory class [E1] − [E2] = [ker(d)] − [Im(d)]. In fact all K-
theory classes occur like this if we allow Ei to be infinite dimensional. This
motivates the study of Fredholm operators.

Fix V to be a separable Hilbert space over C. [A vector space V with an
inner product that induces a complete metric on V].

Definition 2.1. Let T : V → V be a bounded linear map (the image of the
unit ball is bounded).

1. We say that T is Fredholm if both Ker(T ) and Coker(T ) are finite
dimensional.

2. The index of a Fredolm operator T is defined index(T ) = dim(Ker(T ))−
dim(Coker(T )).

3. F := { Fredholm operators : V → V }.

Example 2.2. Consider the Hilbert space L2(Z+) = {(a0, a1, ...) ∈ C∞ :∑
|ai|2 <∞}. The maps

T : (a0, a1, ...) = (0, a0, a1, ...)

T−1 : (a0, a1, ...) = (a1, a2, ....)

have index −1, 1 respectively.

In fact Index(T n) = n ∀n ∈ Z T−1 is a left inverse of T . The operator
T nT−n − T−nT n is the finite rank operator:

(a0, a1, ...) 7→ (a0, a1, ..., an−1, 0, ...)

2.1 Constructing Index bundles

The theory of Fredholm operators is closely related to K-theory: Suppose
that we had a smoothly varying family of Fredholm operators Tx over a
compact, connected space X. Then such a family gives a K-theory class in
X, and all K-theory classes arise in this way.

Definition/Theorem 2.3. Let f : X → F be a family of Fredholm operators
{Tx}. Then we may associate a canonically defined K-theory class Ind(T ) ∈
K(X).
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Proof. The map Index : F → Z is continuous so Ind(Tx) = dim(Ker(Tx))−
dim(Coker(Tx)) is constant. In the simplified situation where dim(Ker(Tx))
and hence dim(Coker(Tx)) are also constant we can give an explicit descrip-
tion of the index bundles.

E =
⊔
x∈X

Ker(Tx), F =
⊔
x∈X

Coker(Tx)

inherit the structure of vector bundles from the family. Define Ind(T ) =
E − F .

Now for the general situation consider the mapHn : (a0, a1, ...) 7→ (0, ..., an, ...)
(assuming for simplicity that V = L2(Z+)). Fredholm operators are invert-
ible up to compact operators, so for each x ∈ X ∃N : Im(HNTx) = Im(HN).
By compactness of X there is a global choice of N that works for all x. Now
the family {HNTx} has Cokernel of constant dimension so apply the above
construction. [HARD BIT: prove this is independent of n].

Exercise 2.4. Show that all K(X) classes arise this way by considering the
sequence

0→ Ker → L2(E)→ E → 0.

[Here L2(E) is the trivial vector bundle of L2 sections of E. The second map
is (x, s) 7→ s(x)]

Example 2.5. Fredholm operators and winding numbers.

Let V = L2(S1) be the space of square integrable (complex) functions on
S1. All such functions have a Fourier series

f(z) =
∑
k∈Z

akz
k

Define the Hardy space H2 to be the subspace of functions with ak = 0 for
all k < 0.

Let g : S1 → C be a continuous function. Define an operator Tg : H2 →
H2. Note that for f ∈ L2 f ∗ g ∈ L2. Define Tf (g) to be the projection of
f ∗ g to H2 by killing the negative Fourier coefficients.

Tg is Fredholm ⇔ Im(g) ⊂ C?. The nice fact about these Fredholm
operators is that the index is the winding number of g around 0.
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3 The Atiyah-Singer Index formula (INCOM-

PLETE)

[Let E,F be vector bundles of rank m and n respectively over X a manifold of
dimension k. A a rank k differential operator is a map D : Γ(E)→ Γ(F )
satisfying the following: About each point choose an open set such that E
and F are trivial. s ∈ Γ(E) and Ds ∈ Γ(F ) may be expressed locally as
s : U → Rm, Ds : U → Rn. We say that D is a differential operator of order
k if locally Ds = As where A is a matrix with coefficients of the form:∑

fi1,...,ij
∂j

∂xi1 ...xij

and j ≤ k.

Example 3.1. • The Laplace operator. ∆ =
∑

∂2

∂x2
i

acting on complex

functions is a differential operator of degree 2.

• The exterior derivative. d : Ωp → Ωp+1 is a differential operator of
degree 1 (exercise).]

Suppose that D is a differential operator of degree k. Now for each 1-
form ω 6= 0 we define σ(D)(ω) ∈ Hom(E,F ) called the symbol of D.
This measures the top-order behaviour of the operator and may be described
locally:

We form a new matrix AP from A above by forgetting all differentials of
order < p, now write the 1-form ω in local coordinates ω(p) = (v1, ..., vk).
Replace each differential ∂

∂xi
in the matrix Ap with vi ∈ R. This matrix

gives a linear map Ep → Vp and globally we have a bundle homomorphism
σ(D)(ω) ∈ Hom(E,F ) which is called the symbol.

Example 3.2. Consider the cotangent bundle π : T ?
X \ 0→ X, we may pull

back the bundles to obtain π?(E), π?(F ). Rearrange the above to show that
the symbol can be expressed as a bundle morphism σ(D) : π?(E)→ π?(F ).

Definition 3.3. D is called an Elliptic operator if σ(D)(ω) is a bundle iso-
morphism for all ω ∈ Ω1

X \ 0.

Example 3.4. For the Exterior derivative we may check that σ(d)(α) : Ωk →
Ωk+1 = · 7→ α ∧ ·.
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By computing the rank of Ωk we see that this can’t be an isomorphism in
all but the most trivial cases, therefore d is not an elliptic operator. Define
d? : Ωk+1 → Ωk by

fdx1...dxp 7→
∑
i

∂f

∂xi
dx1...d̂xi...dxp

. Then d? is the formal adjoint of d. Ker(d) = coker(d?) and coker(d) =
ker(d?), and d+d? : Ω? → Ω? is an elliptic operator (this is seen by computing
the symbol: σ(d+ d?)(a)(·) = a ∧ ·+ ay·). Note that (d+ d?)(Ω2?) ⊂ Ω2∗+1,
restricting the operator in this way Ker(d+d?) = ⊕H2?(X), Coker(d+d?) =
⊕H2?+1(X).

It turns out that an elliptic complex is always a Fredholm operator
(Γ(E),Γ(F ) considered as trivial bundles over X) and we see in this case
Index(D) =

∑
dim(H2i)−

∑
dim(H2i+1) = e(X) (exercise).

Elliptic operators are invertible up to lower order operators. Using the
compact Rellich lemma (which states that L2

k → L2
k−1 is a compact embed-

ding) shows that

L2(E)
D−→ L2(F )

is Fredholm. Index(D) depends only on the homotopy class of the map
T ∗X \ 0→ Iso(E,F ) given ω 7→ σ(D)(ω) and can provide information about
the topology of X.

Consider π?(E) − π?(F ) ∈ K(T ?(X)). Subtracting ρ?(F ) to get a class
σ̃ ∈ K̃(X).

We may embed X ↪→ NX ↪→ Rn. Suppose that NX was trivial NX =
X × Rm (m = codim(X)).

Now there exists an operator on the trivial bundle R×C over R. Whose
symbol over T ?R ∼= R2, gives the Bott class b ∈ K̃(R2). We want to form
D �B�m ∈ K̃(T ?X ×R2m) = K̃(T ?(NX)).
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