
Classifying spaces, equivariant cohomology and
localisation

1 Classifying spaces
The goal of this section is to introduce the notion of classifying space BG of a
(Hausdorff) topological group G. This space has the property that isomorphism
classes of principal G-bundles over a paracompact Hausdorff base space corres-
pond bijectively to homotopy classes of maps from the base to BG, hence the
name. More explicitly this correspondence is given by pullback of a universal
principal G-bundle EG→ BG.

1.1 The whole world in an example
We begin by considering the special case of G = GL(r,C). But first we need
some preliminaries on Grassmannians. Denote by Gr(k,Cn) the Grassmannian
of k-dimensional linear subspaces of Cn. We then have a tautological short exact
sequence of vector bundles on Gr(k,Cn):

0 −→ S(k,Cn) −→ Cn −→ U(k,Cn) −→ 0.

Here S(k,Cn) denotes the tautological subspace bundle on Gr(k,Cn), Cn is the
trivial bundle with fibre Cn over Gr(k,Cn) and U(k,Cn) is the obvious quotient
bundle. If we define Gr(C∞, k) := lim−→Gr(n−k,Cn) and U := lim−→U(n−k,Cn) we
obtain a vector bundle U → Gr(C∞, k) which we can think of as the tautological
quotient bundle on the infinite quotient Grassmannian Gr(C∞, k).

Now let E →M be a complex vector bundle of rank r over a manifold M ; for
the present discussion it is irrelevant whether this is a smooth vector bundle or
just a topological one. Denote by Γ(E) the trivial vector bundle with fibre Γ(E)
over M , where Γ(E) is the space of sections of E. We then have a short exact
sequence of vector bundles

0 −→ kerφ −→ Γ(E) φ−→ E −→ 0,

where the map φ is the obvious one given by evaluation of sections. Thinking
of Γ(E) as the vector space C∞, this expresses E as a quotient of M × C∞, i.e.
every fibre of E is a r-dimensional quotient of C∞. This corresponds to having a
map (continuous or smooth, depending on the chosen setting) f : M → Gr(C∞, r)
such that E is the pullback f∗U of the tautological quotient bundle U under f .
When E is the tangent bundle of M we can think of this map f as a generalised
Gauss map for the manifold. Denote by VectrC(M) the set of isomorphism classes
of complex vector bundles of rank r over M and let [M,Gr(C∞, r)] be the set
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of homotopy classes of maps M → Gr(C∞, r). Since pullbacks under homotopic
maps are isomorphic we have sketched the proof of a bijective correspondende

VectrC(M)←→ [M,Gr(C∞, r)]. (1)

For the present case of G = GL(r,C) we write BG := Gr(C∞, r).

Example 1.1. Consider the case r = 1. By choosing inner products on the Cn
(e.g. the obvious ones) we obtain an isomorphism Gr(C∞, 1) ∼= CP∞. Combining
this with what we have seen so far we obtain a bijective correspondence

Vect1
C(M)←→ [M,CP∞].

Example 1.2. Now let M = Sn be the unit n-sphere. One can show by means
of clutching functions that VectrC(Sn) corresponds bijectively to [Sn−1, G]. But
by what we have seen now we also know that VectrC(Sn) corresponds to [Sn, BG].
Thus we conclude that there is an isomorphism

πn(BG) ∼= πn−1(G) (2)

for every n (actually we only know that it is a bijection, we will however see
shortly that it is indeed an isomorphism). Note that we are explicitly working
with G = GL(r,C) and BG = Gr(C∞, r) here, but the same argument does
work for general classifying spaces once we have defined them.

Note that (1) doesn’t quite fit into the general statement given in the intro-
duction: there are no principal bundles mentioned here. It turns out however
that there is a somewhat canonical correspondence between complex vector
bundles of rank r and principal GL(r,C)-bundles (this works for other fields
too). Namely we define the frame bundle of a given vector bundle E → M of
rank r to be the principal GL(r,C)-bundle F (E)→M whose fibre over a point
is the space of isomorphisms from Cr to the fibre of E over that point. Note that
there is an obvious right action of GL(r,C) on F (E) which preserves the fibres
and acts freely and transitively on them. Noting that pulling back commutes
with the frame bundle construction we can translate what we have seen so far
into a correspondence

{principal GL(r,C)-bundles over M}/isomorphism←→ [M,Gr(C∞, r)].

The correspondence here is given by pulling back the frame bundle of U → BG.
We will denote it by EG→ BG and say that it is the universal principal G-bundle
(precisely because of the above correspondence).

We now want to see that the space EG is weakly contractible. This will be
true in the general setting and is part of the allure of the universal principal
bundle. Knowing that BG = Gr(C∞, r) is paracompact we obtain a long exact
sequence of homotopy groups:

· · · −→ πi(G) −→ πi(EG) −→ πi(BG) ∂∗−→ πi−1(G) −→ · · · .

All the maps except ∂∗ are the obvious ones. To construct ∂∗ start by picking an
element [a] ∈ πi(BG) and choosing a representative a : Sn → BG. We can think
of this map as a map a : Dn → BG on the closed unit n-disk that is constant on
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its boundary ∂Dn = Sn−1. From the fact that EG→ BG is a fibre bundle with
paracompact base space we know that there is a lift ã : Dn → EG of a. Since
the image of Sn−1 under a is a single point we know that its image under ã must
be contained in a fibre. Thus we have ã|Sn−1 : Sn−1 → G and we can define

∂∗([a]) := [ã|Sn−1 ] ∈ πn−1(G).

The fact that this is well-defined follows from the homotopy lifting property for
fibre bundles over a paracompact base. If we now knew that ∂∗ is an isomorphism
we’d be done. This is indeed true as the following exercise shows:

Exercise 1.3. Meditate on the fact that ∂∗ is the same map as the one in (2).

Exercise 1.4. Think about what the above construction of ∂∗ looks like explicitly
in the case of the Hopf fibration S1 ↪→ S3 −→ S2.

Exercise 1.5. Let Z be the group of integers under addition. Show that BZ = S1

and that EZ → BZ is R → S1 with the map being the complex exponential.
Do the above by noting that principal Z-bundles on M are in correspondence
with H1(M ;Z) and that the latter is in correspondence with [M,S1].

Exercise 1.6. Think about what the total space of the pullback of EZ→ BZ
under the double cover S1 z2

−→ S1 looks like.

1.2 General groups
To define the classifying space and universal bundle for a general (Hausdorff)
group we can start by constructing a principal G-bundle EG→ BG with EG
contractible. To do this we use the topological join construction:

Definition 1.7. Let X,Y be topological spaces. The join X ?Y is then defined
to be (X × Y × [0, 1])/ ∼, where the equivalence relation ∼ is generated by
(x, y1, 0) ∼ (x, y2, 0) and (x1, y, 1) ∼ (x2, y, 1) for x, x1, x2 ∈ X and y, y1, y2 ∈ Y .

Note that the join of two spaces is just the space obtained by connecting
every point of one space by the unit interval to every point of the other space.
Moreover the construction is associative and commutative. We now define the
universal bundle by setting EG := G ? G ? G ? · · · and BG := EG/G. One has
to verify that this is indeed a principal G-bundle (in particular that it has local
trivialisations), but that follows by thinking in an appropriately elegant way
about EG.

Example 1.8. We have seen how to construct EGL(r,C). If G has a faithful
linear representation G ↪→ GL(r,C) then note that G acts freely on EGL(r,C)
and so we can just define EG := EGL(r,C) and BG := EGL(r,C)/G.

We now have the following correspondence in general:

Theorem 1.9. LetM be a paracompact Hausdorff space and let G be a Hausdorff
topological group. There is a bijective correspondence

{principal G-bundles on M}/isomorphism←→ [M,BG],

where the map from right to left is given by pulling back EG → BG along a
representative.
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For Example 1.8 to fit into this general picture we have to mention another
result:

Theorem 1.10. Let G be a Hausdorff topological group. Then every principal
G-bundle with contractible total space is a universal bundle in the sense of
Theorem 1.9. In particular its total and base spaces are unique up to homotopy.

Although a rigorous proof of Theorem 1.9 in the general topological setting
requires some care regarding technicalities, we can easily argue why this should
be true for the case ofM a smooth manifold and G a compact Lie group. Namely
let P →M be a principal G-bundle and consider the following diagram:

P EG× P EG

M EG×G P BG
p π

Here EG ×G P := EG × P/ ∼ where (eg, x) ∼ (e, gx) for e ∈ EG, x ∈ P
and g ∈ G. Now note that the bundle EG × P → EG ×G P is the pullback
of EG → BG under the obvious map π, and also that it is the pullback
of P →M under the projection p. But we also have that EG×G P →M is a
fibre bundle with fibre EG which is weakly contractible and so it has a global
section s : M → EG ×G P . Finally it follows from what we have said so far
that P →M is the pullback of EG→ BG under π ◦ s.

2 Equivariant cohomology
The goal now is to introduce a cohomology theory which is in some sense
tailored to spaces that have a (smooth or continuous) group action on them.
More specifically we note that if we have a topological group G acting on a
space X, then the orbit space X/G generally won’t be well-behaved unless the
action is free. If it were free we’d be happy with looking at H∗(X/G), but
generally this won’t cut it since in the case of a transitive action we’d loose
all information. Thus we try to alter the space X in such a way that the
action becomes free but the homotopy type of X doesn’t change. Using the
universal bundle construction from the previous section we can do precisely that
by defining XG := EG×X/ ∼, where (eg, x) ∼ (e, gx) for every e ∈ EG, x ∈ X
and g ∈ G. This suits us because EG ×X has a free G-action (since EG has
one) and it has the same homotopy type as X. Finally we define the equivariant
cohomology of X with respect to G to be

H∗G(X) := H∗(XG).

Note that if G acts freely on X then we obtain what we wanted: H∗G(X) =
H∗(X/G). If G is the trivial group then we just recover the usual cohomology
ofX. More generally ifG acts trivially onX then we haveH∗G(X) = H∗(BG×X).
In particular we note that H∗G(point) = H∗(BG) and so the theory is already
much richer than ordinary cohomology.

There are two natural maps on XG that are worth understanding. One is
the induced projection XG → X/G. In general it is not a fibre bundle since the
fibre over a free G-orbit is EG, the fibre over a fixed point is BG and the fibre
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over a general orbit Gx is EG/Gx = BGx where Gx is the stabiliser subgroup
of x ∈ X. The other obvious map is XG → BG. This is indeed a G-bundle
with fibre X. This is precisely because of how we constructed XG: it’s the
associated bundle to the principal G-bundle EG → BG with respect to the
G-space X. In particular we have a homomorphism H∗(BG)→ H∗G(X) which
tells us that H∗G(X) is actually a H∗(BG)-module. We also have an obvious
homomorphism i∗ : H∗G(X) → H∗(X) induced by the inclusion of X as fibre
of XG (all such inclusions are homotopic and thus induce the same map in
homology).

Example 2.1. If G = C∗ and we work with coefficients in C then H∗(BG) =
H∗(CP∞) = C[t] and so H∗G(X) carries a C[t] action.

Exercise 2.2. Note that BS1 = BC∗. Now assume that X has a free S1-action.
Show that the action of C[t] on H∗S1(X) is given by t being the first Chern class
of the S1-bundle X → X/S1.

3 Localisation
We have seen that we can define a sensible cohomology theory for group actions
that aren’t necessarily free. It would be nice however if there were also some
computational advantages. We might hope for that to be true since we have seen
that the equivariant cohomology of a point is usually non-trivial and can be in
fact infinite-dimensional. If for example the action of G on X has finitely many
fixed points we might hope to get an inclusion H∗G(X) ↪→ H∗G(XG), where XG

is the fixed point set in X under G. This isn’t true in general, but under fairly
weak assumptions and modulo torsion (in a very general sense) this is actually
an isomorphism. Thus we can in some sense localise to the fixed point locus.

For simplicity of exposition assume that G = S1 acts on a compact n-
dimensional manifold X in a way such that every orbit is either free or fixed. We
don’t loose generality here since we work with C coefficients from now on and so
any torsion caused by stabilisers in S1 is killed anyways. Denote by F ⊆ X the
subset of fixed points.

Exercise 3.1. F ⊆ X is a submanifold.

Proof. Let g be a Riemannian metric on X. Averaging the metric g by G
(G = S1 or any compact Lie group), we can suppose that G acts by isometry,
i.e. τg : X → X, x→ g · x, is an isometry of (X, g).

Suppose that the point x ∈ F is not isolated and define the space of invariant
vectors

H = {v ∈ TxX| dτg(v) = v ∀g ∈ G}.

Note that expx(H) ⊆ F . Indeed, since τg is an isometry, we have

τg · expx(h) = expτgx(dτgh) = expx(h).

Let y ∈ F ∩ U , y 6= x, where U is a neighbourhood of x such that expx :
exp−1(U) ⊆ TxX → U is a diffeomorphism. Since expx is surjective onto U ,
there exists v ∈ TxX such that y = expx(v). Being y a fixed point,

expx(v) = τg · expx(v) = expτgx(dτgv) = expx(dτgv).
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By the injectivity of expx |exp−1(U), we conclude that v ∈ H. Hence,

F ∩ U = expx(H) ∩ U

and expx |H is a local chart for F .

Let c be the codimension of F in X. Now consider the long exact sequence
for cohomology of a pair:

· · · −→ H∗(X,X \F ) −→ H∗(X) −→ H∗(X \F ) −→ H∗+1(X,X \F ) −→ · · · .

By excision and the Thom isomorphism we have

H∗(X,X \ F ) ∼= H∗(νF , ∂νF )
∼= H∗compact(νF )
∼= H∗−c(F ),

where νF is the normal bundle of F in X. By assumption X \ F has a free
G-action. Thus if we pass to equivariant cohomology we obtain

· · · −→ H∗−cG (F ) −→ H∗G(X) −→ H∗((X \ F )/G) −→ H∗−c+1
G (F ) −→ · · · .

This should be understood as a long exact sequence of C[t]-modules. Note
that H∗((X \ F )/G) is finite dimensional as a C-vector space. Since it is also a
C[t]-module it must be of the form C[t]/(tk) for some k ∈ N. We introduce the
notation

Ĥ∗G(X) := H∗G(X)⊗C[t] C(t),

and call this localisation. Note that C(t) is a flat C[t]-module and so if we localise
the above exact sequence we obtain another exact sequence where Ĥ∗G(X \F ) = 0
and thus we obtain an isomorphism

Ĥ∗−cG (F )
∼=−→ Ĥ∗G(X).

Similarly by considering the cohomology long exact sequence for the pair (X,F )
we obtain another isomorphism

Ĥ∗G(X)
∼=−→ Ĥ∗G(F ).

We can now ask what the composition of the above two isomorphisms is. In the
case of usual cohomology we have the following commutative diagram explaining
the maps:

H∗−c(F ) H∗(X) H∗(F )

Hn−∗(F ) Hn−∗(X) Hn−c−∗(F )

∼= ∼= ∼=
i∗ ∩F

The vertical isomorphisms are given by Poincaré duality. If we start at the top
left with 1 ∈ H∗−c(F ) and go around anticlockwise we end up getting mapped
to the Euler class e(νF ) ∈ H∗(F ). Passing to equivariant cohomology again we
have that the composition

H∗−cG (F ) i∗−→ H∗G(X) i∗−→ H∗G(F )
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is given by cup product with the equivariant Euler class eG(νF ) ∈ H∗G(F )
(since νF carries an obviousG-action it induces a bundle on FG and we understand
its Euler class to be the equivariant Euler class of νF ). By the above we now know
that after localisation eG(νF ) is invertible in Ĥ∗G(F ). Combining everything so
far we obtain the formula

σ = i∗

(
i∗σ

eG(νF )

)
for σ ∈ Ĥ∗G(X). Finally note that

Ĥ∗G(F ) = H∗G(F )⊗C[t] C(t)
∼= (H∗(F )⊗C H

∗(BG))⊗C[t] C(t)
∼= H∗(F )⊗C (C[t]⊗C[t] C(t))
∼= H∗(F )⊗C C(t).

We have thus sketched the proof of

Theorem 3.2 (Atiyah–Bott–Berline–Vergne). Let σ ∈ H∗(X) and assume that
it comes from a σ̃ ∈ H∗G(X) under the map H∗G(X)→ H∗(X). Then∫

X

σ =
∫
F

[
i∗σ̃

eG(νF )

]
,

where the square brackets mean taking the constant term.

Exercise 3.3. Take S1 to act on S2 by rotation around the z-axis. Lift the
volume form vol ∈ H∗(S2) to H∗S1(S2), localise and calculate

∫
S2 vol using

Theorem 3.2.

Exercise 3.4. Show using the localisation theorem that a generic cubic surface
in P3 contains 27 lines.
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