
Line Bundles and Bend-and-Break

1 Line Bundles and the Kodaira Embedding

Let X be a compact complex manifold or a smooth algebraic variety, let say over C. The content
of this section is succinctly expressed by the mantra: ‘line bundles of X give rational maps of X
into projective space’.

In order to make precise this sentiment consider a line bundle L on X which admits a global
section. To each x ∈ X, so long as the evaluation map evx on global sections of L is not
identically zero, we can describe a hyperplane in H0(L ) given by {s ∈ H0(L ) | s(x) = 0}. This
yields a rational map

X
ΦL−−−→P(H0(L )∨).

The map ΦL is defined on the whole of X whenever evx is not, for all x ∈ X, identically zero.
When this is the case we say L is generated by sections or base-point free.

Under suitable conditions the line bundle L will yield, via ΦL , an embedding of X into
projective space: in which case ΦL is known as the Kodaira Embedding. A line bundle L is
called

• very ample ⇔ ΦL is an embedding.

• ample ⇔ ΦL N is an embedding for some N > 0.

• semiample ⇔ ΦL N is a regular morphism for N >> 0.

Exercise 1. Work with X an algebraic variety and L a very ample line bundle on X. Reconcile
the image of ΦL with Proj of a suitable graded ring.

Exercise 2. Show that L is very ample if and only if H0(L ) separates points and tangents of
X, i.e. if and only if

• for all x, y ∈ X there exists sx, sy ∈ H0(L ) such that sx(x) 6= 0, sy(y) 6= 0 and sx(y) =
sy(x) = 0,

• and for all v ∈ TxX there exists sx ∈ H0(L ) such that sx(x) = 0 and Dvsx(x) 6= 0.

Exercise 3. Rephrase the two conditions of the previous exercise algebraically, i.e., in terms of
sections generating L⊗ k(x). Here k(x) is the residue field of x.

Exercise 4. Show that, so long as L is generated by sections, L ' Φ∗L O(1).

Exercise 5. Show that L is semi-ample if and only if L is the pull-back of an ample line bundle
under a regular map.
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2 When is a Kähler manifold projective?

If L is an ample line bundle on a compact complex manifold X then X is projective and
so restricting the Fubini-Study metric ωFS on Pn endows X with the structure of a Kähler
manifold. By Exercise 4 an integer multiple of the first chern class of L is the pullback along
ΦL of c1(O(1)). Since c1(O(1)) = [ωFS ] we have that c1(L ) is represented by a Kähler form.
In fact:

Kodaira’s Embedding Theorem. If L is positive in the sense that c1(L ) ∈ H2(X,R) is
represented by a Kähler form then L is ample.

Corollary. Suppose X is a Kähler manifold. It is projective if and only if it has an integral
Kähler form. We say a 2-form ω is integral if its class lies in the image of H2(X,Z)→ H2(X,R).

Exercise 6. Prove this corollary.

3 When is a line bundle ample?

In this section we describe a necessary and sufficient condition for a line bundle over a projective
variety X to be ample in terms of intersection theory. If C is a curve in X and L a line bundle
over X we define

L · C :=

∫
C

c1(L ).

For a curve C ⊂ Pn, we can write O(1) · C in a variety of ways:

• The number of zeroes of a section of O(1) restricted to C; recall that c1(O(1)) may be
defined as the Poincare Dual to the locus of zeroes of a section of O(1).

• The volume of C with respect to the Fubini-Study metric; this is because c1(O(1)) = ωFS .

• The intersection pairing of C withH, the Poincare Dual to c1(O(1)). ThisH is a hyperplane
since sections of O(1) are homogeneous linear polynomials in x0, . . . , xn; their vanishing
describes a hyperplane in Pn.

In particular O(1) · C > 0. If L is ample over X then ΦL N describes an embedding for some
N > 0. If C ⊂ X is a curve then

N(L · C) = L N · C = O(1) · ΦL N (C) > 0.

Kleiman’s Criterion. Suppose X is a projective variety and L is a line bundle over X. Fix
an ample line bundle L ′ on X and define, for each curve C ⊂ X, the degree degC := L ′ ·C. A
necessary and sufficient condition for L to be ample is that, for all curves C ⊂ X, L·C > ε degC
for some positive constant ε (depending on L ′).

Exercise 7. Beware! There are line bundles with L ·C > 0 for all curves C which are not ample.
Use google to find a counterexample.

4 When ΦL is not an embedding

In this section take X a compact complex manifold over C. If L is once more a line bundle over
X what can we say about ΦL if C ⊂ X is a curve with L · C = 0? If C has genus zero then
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L · C = 0 ⇔ L |C ' OC . This is not true for curves of higher genus. For example if E is an
elliptic curve and P0, P1 are distinct points on E then OE(P0 − P1) is not a trivial bundle.

If L |C is trivial then sections of L are constant along C (because sections are just functions
X → C and X is compact) and so ΦL is either ill-defined on all of C or maps each point of C
onto a single point of projective space. If L is generated by sections then of course ΦL cannot
be ill-defined. Also a general result says that for Y ⊂ X a submanifold of codimension at least
2 sections of L |X\Y can be lifted to sections of L ; thus if dimX = 2 then ΦL will always be
defined on a neighbourhood of C.

Example. Let S be a surface and let C ⊂ S be a genus zero curve with self-intersection
−1. Let L be a very ample line bundle on S and set d := L · C > 0. The line bundle
L (dC) := L ⊗ OS(dC) has first chern class c1(L ) + d[C] and so

L · C = d+

∫
C

d[C] = d+ d[C] · [C] = 0.

Thus L (dC)|C is trivial and so ΦL (dC) contracts C to a point. If we interpret OS(−C), as
the subsheaf of OS of functions which vanish along C then we see that OS(−C)|S\C = OS\C .
Hence OS(dC)|S\C is trivial and so L (dC)|S\C is still very ample. In particular ΦL (dC) is an
embedding of S \ C into projective space which contracts C to a point.

Exercise 8. Let C ⊂ P2 be a smooth cubic and let Z = {12 points on C}.

• For generic Z show that there does not exist a non-trivial line bundle L on BlZ P2 which
is trivial (holomorphically or algebraically) on C.

• However, show that if Z is the intersection of C with a quartic then L may be chosen
trivial on C. Further show that in this case ΦL contracts C to a singular surface.

5 When a line bundle is not generated by sections

If L is a line bundle on an algebraic variety X, we write H0(L ) for OX ⊗CH
0(L ). We have a

natural map
H0(L )→ L

which acts via (x, s) 7→ (x, s(x)). To ask that L be generated by sections amounts to asking
that H0(L )→ L be surjective. What happens when this is not the case? TO DO!

Exercise 9. Assume we are in the setting just described. Then ΦL is ill-defined along Z. Show
that after blowing up along Z we get obtain regular map

BlZ X
Φ−−−→ P(H0(L )∨)

such that Φ∗O(1) = L (−E) where E is the exceptional divisor of the blow up.

Exercise 10. Show that a degree one curve in P3 must be a line.

Exercise 11. Let Z be 6 distinct points in P2 and let IZ be the ideal sheaf corresponding to Z.
Exercise 9 provides us with a map

BlZ P2 −−−→ P(H0(OP2(3)⊗IZ)∨)

• Check the image is a surface of degree 3.
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• Find 27 lines on it.

• Show any cubic surface has 27 lines and show that any configuration of 6 disjoint such lines
can be blown down to give P2.

• Show that these lines have self-intersection −1 (use adjunction formula).

6 The Minimal Model Program

In this final section we describe some results which make up the rudiments of what is known as the
minimal model program. We wish to study KX defined to be the line bundle detT ∗X =

∧top
T ∗X .

One reason for this is because the global sections of KX are a birational invariant of X (see
Exercise 12). say somehing about positivity, kodaira dimension, rational curves, canonical models

Bend-and-Break Lemma. Let X be a projective variety and C ⊂ X a curve. Let c be a point
on C. Suppose that hypothesis (∗) is verified (we’ll tell you what (∗) is below). Then there exists
a genus zero curve in X which contains c.

We shall sketch a proof of this result. By blowing up we can assume that the curve C is
smooth, of genus > 0 and that we have an embedding f : C → X with f∗KX ·C < 0. Lets write
p for the point in C with f(p) = c. The strategy is to look at a moduli space of deformations of
f which all map p onto c. We assume the hypothesis:

this moduli space has suitably large dimension (i.e., > 0). (∗)

Then we can choose a smooth curve D in this space of deformations. The upshot of this is that
we obtain a morphism

ev :D × C → X such that

ev(D × {p}) = {c}.

The maps fd := ev |{d}×C → X are the deformations of f . We can compactify D to get a proper

curve D and extend our evaluation map to a rational map

ev : D × C 99K X.

The key point is to observe that ev cannot possibly be defined everywhere on D×{p}. If it was
then points v ∈ C in a suitably small affine neighbourhood of p would have ev(D × {v}) in a
small affine neighbourhood of c. Since D × {v} is proper this forces ev(D × {v}) to be a point
and so fd(v) = f(v) for all v in an affine neighbourhood of p and all d ∈ D. This implies fd = f
on a dense open subset and so fd = f on all of X. This is impossible.

Let Λ be the blow up of D × C at all the points at which ev is not well-defined; we have
regular maps ε : Λ → D × C and e : Λ → X such that e = ev ◦ ε. If ev is not defined at (d0, p)
then the fibre of d0 under the projection Λ→ D consists of the strict transform of {d0}×C and
a copy of P1. Moreover e will not map all of this P1 to a point; the genus zero curve in X which
is the image of this P1 is the curve we were looking for.

Theorem. The hypothesis (∗) of the Bend-and-Break Lemma is verified if KX · C < 0.

Again we shall only provide a very vague sketch of the proof of this result. It is possible to
give the following lower bound on the space of deformations of our curve f : C → X:

−KX · f∗C︸ ︷︷ ︸
>0

−g(C) dimX.
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If we could alter f so that it had arbitrarily high degree without changing the genus of f(C) then
we would be good. Unfortunately, in characteristic zero, this can only be done if C is an elliptic
curve; compose f with the multiplication by n covering; if g(C) > 1 then we have a problem. If
we were in characteristic > 0 then we might however not be such a bad position; powers of the
Frobenius morphism have high degree but do not change the geometry of your curve. Thus in
characteristic > 0 the theorem holds.

To get the theorem working in characteristic 0 we reduce mod p for all p and obtain curves
mod p in X. Actually we don’t necessarily reduce mod p because X need not have a model over
Z; instead we just adjoin to Z the coefficients of the polynomials defining X to obtain a ring R of
finite type over Z and reduce mod m for some maximal ideal m ⊂ R. Some commutative algebra
shows that R/m is finite and that the maximal ideals are dense in SpecR. This it turns out (by
some theorems from algebraic geometry; see Hartshorne, Exercise 3.18-3.19) ensures that, since
there exists rational curves in each X mod m, there must be a rational curve in X.

Exercise 12. Consider the natural map π : BlZ X → X. Show that π∗ induces an isomorphism
between H0(KX) and H0(KBlZ X).
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