
Chern Classes

1 Introduction and Basic Definitions

We introduce C∞ vector bundles, sections and other basic definitions before
building up to the Chern classes of line bundles through a sequence of examples.

1.1 What are Chern classes?

It is usually a difficult problem to classify all non-isomorphic vector bundles
over a given fixed base space. The idea of characteristic classes is to provide
a topological invariant which allows us to distinguish some classes of vector
bundles. Characteristic classes are elements of the cohomology groups of the
base space. Chern classes are particular characteristic classes which we associate
to complex vector bundles. They are a sequence of functions c1, c2, . . . assigning
to each complex vector bundle E → B a class ci(E) ∈ H2i(B;Z) depending
only on the isomorphism type of E (and are the unique such sequence satisfying
a list of properties which we’ll list towards the end). The Chern classes are
formally akin to the Stiefel-Whitney classes, which are defined for real vector
bundles. The Stiefel-Whitney classes take coefficients in Z2.

1.2 Vector Bundles

In the course of this lecture we denote by M , a smooth manifold of real dimen-
sion n.
A rank r smooth complex vector bundle is a map π : E → M together
with a complex vector space structure on the fibres π−1(b) for each m ∈ M
such that we have the following local triviality condition: for each m ∈M there
exists an open neighbourhood Um of m such that there is a diffeomorphism
dm : π−1(Um) → Um × Cr : π−1(b) 7→ {b} × Cr which is a vector space iso-
morphism. We call dm the local trivialisation of the vector bundle at m. We
call E the total space and call M the base space of the vector bundle. For
convenience, we refer to the bundle simply as E with all of the other data above
quietly suppressed.

A smooth section of the vector bundle E is a smooth right inverse of π.
The trivial bundle over M is the vector bundle M × Cr. Any vector bundle
E is said to be trivial if it is isomorphic to the trivial bundle.

Exercise 1.1. Show how to put the real line bundle structure on the open
Möbius band
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Exercise 1.2. Show that L⊗2 is isotopic in R4 to the trivial embedding of the
cylinder.

Fact 1.1. Bundles on contractible manifolds are trivial

Sketch proof: After trivialising at some fibre Ex lying over x, we extend
the trivialisation along the homotopy that contracts M to x using a version of
Tietze’s Extension theorem. We then lift the homotopy to E so that it covers
the homotopy on M .

2 Bundles on spheres

2.1 Clutching functions

A convenient way of constructing vector bundles over spheres Sk is by using
clutching functions. We start by decomposing Sk as the disjoint union of two
disks Dk

+ and Dk
−. Each disc is contractible and so any vector bundle on each

piece is trivial by Fact 1.1. We then glue along the boundaries by identifying
∂Dk

+ with ∂Dk
−, whilst applying a map called a clutching function (think of

engaging gears in machinery) f : Sk−1 → GLr(C) to the vectors in the bundle.
We can thicken the intersection slightly to Sk−1×(−ε, ε) to make things smooth.

Fact 2.1. Homotopic clutching functions f , g give isomorphic smooth complex
vector bundles Ef , Eg.

Theorem 1. There is the following bijection between homotopy classes of maps
and rank r complex vector bundles over Sk:

[Sk−1, GLr(C)]↔ VectrC(Sk)

Proof. See Hatcher, Prop 1.11

Remark 2.1. Hatcher also deals with the slightly more subtle case of real vector
bundles over Sk in Proposition 1.14. We have a ‘nice’ situation in Theorem
1, because GLr(C) is path-connected (see below for proof). On the other hand
GLr(R) has two path-connected components. In order to draw a similar bijection
the notion of an orientation on vector bundles is introduced and also a restriction
to path-components of GLr(R).

Corollary 1. Every complex vector bundle over S1 is trivial.

Proof. This is equivalent to saying that GLr(C) is path-connected. By apply-
ing elementary row operations, we can diagonalise any matrix GLr(C). We
construct a path to the diagonal matrix by applying an appropriate sequence of
row operations with a factor of λ in front of each, then running λ continuously
from 0 to 1. Diagonal matrices in GLr(C) are homeomorphic to r copies of
C− {0} which is path-connected.
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Example 2.1. For the line bundle on S2 we have:
π1(GL1(C)) = π1(C∗) = π1(Z) ∼= Z
without wishing to jump the gun, we will soon see that the cohomology class of
the generator of this group is the first Chern class of the line bundle.

Remark 2.2. The bundle corresponding to n ∈ Z can be constructed alge-
braically by using the transition function z 7→ zn

Exercise 2.1. Show that a line bundle L is trivial ⇐⇒ L has a non-vanishing
section.
Extension: Show that a rank r vector bundle E is trivial ⇐⇒ E has r sections
s1, . . . , sr such that the vectors s1(b), . . . , sr(b) are linearly independent in each
fibre p−1(b)

Exercise 2.2. Research and understand the Hopf fibrations.

3 Chern classes as degeneracy loci of generic
sections

We specialise slightly and consider p : E 7→M , a complex vector bundle of rank
r, with base space M a compact (orientable) smooth manifold of real dimension
n.

A generic section is a section of the bundle which intersects the zero-section
OM transversally. Two sections are said to have transversal intersection if
at every point of intersection, the tangent spaces of the sections at the point
generate the tangent space of the ambient space at the point.

We can define the Chern classes in terms of the zero sets of generic sections,
namely the transversal intersections of the generic sections with OM .

For a generic section s, we write Z(s) for the zero-set of s. Since s is
transverse to the zero section, Z(s) is a submanifold of M of real codimension
2r. Applying Poincarè duality to the fundamental class [Z(s)] ∈ Hn−2r(M), we
obtain a cohmology class in H2r(M). This is called the Euler class, e(E) of
the vector bundle and is also the rth Chern class.

e(E) = cr(E) := [Z(s)] ∈ Hn−2r(M) ∼= H2r(M ;Z)

By analogy we extend the definition to give us a sequence of cohomology classes:

ci(E) := PD([Z(s1 ∧ . . . ∧ sr−i+1)]) ∈ H2i(M ;Z)

for s1, . . . , sr−i+1 generic sections. Here Z(s1∧. . .∧sr−i+1) can be viewed as the
set of points m ∈ M where the sections s1(m), . . . , sr−i+1(m) become linearly
dependent. Note then that

c1(E) := PD([Z(s1 ∧ . . . ∧ sr)])H2r(M ;Z)
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We define c0(E) = 1 and call the sum c(E) = 1 + c1(E) + c2(E) + . . . ∈
H∗(M ;Z) the total Chern class of E. Point (3) in Theorem 2 below demon-
strates that such a sum is finite, i.e. a well-defined element of H∗(M ;Z)

Theorem 2. There is a unique sequence of functions c1, c2, . . . assigning to
each complex vector bundle E → B a class ci(E) ∈ H2i(B,Z) depending only
on the isomorphism type of E and satisfying:

1. ci(f
∗E) = f∗(ci(E)) for a pullback f∗E

2. c(E1 ⊕ E2) = c(E1) ∪ c(E2)

3. ci(E) = 0 if i > rankE

4. For the canonical line bundle E → CP∞, c1(E) generates H2(CP∞;Z).

4 Suggested Reading

• A. Hatcher - Vector Bundles and K Theory

This book is a ‘work in progress’, but displays welcome familiarity if you
have studied Hatcher’s ‘Algebraic Topology’

• MJ. Atiyah - K Theory

Richard Thomas’ recommendation

5 Additional exercises

1. Why is the class of [Z(s)] independent of choice of generic section?

2. Show that for the line bundle O(−n) the trivialising section 1 on the z-disc
on the left glues to the section w−n on the w-disc on the right Interpret
in terms of zeros and poles!

3. Suppose that Z ⊂M is a codimension-r submanifold with normal bundle
N , and assume everything is compact and oriented. Let [Z] ∈ H(M)
denote the fundamental class of Z. Show that its self-intersection [Z].[Z]
is (the pushforward from Z of the Poincaré dual of) cr(N).
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