
Deformation theory

Abstract

These notes are meant to be a quick and quite informal introduction to
”Deformation Theory”. The focus is on some concrete simple examples,
we refer to other sources for a systematic treatment of the subject.

Introduction

Deformation theory is concerned with the understanding of the local ge-
ometry of moduli spaces, which are among the most central objects in mod-
ern algebraic geometry. Moduli spaces naturally arise when we try to classify
algebro-geometric objects: given a class M of algebro-geometric object, e.g.

M = {isomorphism classes of vector bundles of fixed rank over X}

M = {isomorphism classes of subvarieties of a fixed varieties X with fixed Hilbert polynomial}

M = { isomorphism classes of regular maps f : X → Y }

we would like to describeM and to do so we look for some geometric structure
on it. A priori, this is just a set, but imposing suitable (stability) condition on
the class of objects we are studying, we can get something more. Hopefully M
will have the structure of a scheme, but in most cases M we can only hope for
a weaker structure.

In this notes we will not be concerned with the problem of the existence of a
moduli space, but assuming there is one, or at least there is locally one, we want
to understand its structure around a point studying infinitesimal deformations.

1 Global study: notion of family and the functor
of points

In order to give a geometric structure to M it is not enough to know what
its point are but we need to understand how they fit together in a geometric
significant way. This is encoded by the notion of family.

In general, given ξ an algebro-geometric object, a family of objects of type
ξ over S is the data of a morphism

χ→ S,

flat over S, such that the fiber χs are ”of same type of χ. Let us now list some
down-to-earth examples of this general philosophy:

- Let F be a coherent sheaf on X, a flat family of sheaves over the base S is a
coherent sheaf χ → X × S, flat over S, such that χs is a coherent sheaf
on X;
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- Let Y ⊂ X a subvariety of a variety over C, a flat family of subvarieties over
S is a scheme Y ∈ X × S, flat over S, such that for each s ∈ S Ys is a
subvariety of X ∼= X ×C s;

- Let E be a vector bundle over X. A family of vector bundles over S is a
vector bundle E → X × S 1

- Let X a nonsingular variety over K (e.g. a complex manifold), a family of non
singular varieties over the base scheme S is a variety X ′ → S, flat over S,
such that for every s ∈ S X ′s is a K(s) variety.

It comes out that ”flatness” is the right condition to impose to avoid a series
of wild situations. Note that as flatness is a stable property under base change,
associating to a scheme S a flat family parametrised by S is functorial. So we
can define a functor:

M : (Schemes)→ (Sets)

S →
{

isomorphism classes of
flat families over S

}
and for each morphism of schemes we have:

f : S′ → S′′ ⇒
χ×S′′ S′ χ

S′ S′′.
f

Moreover, flat morphisms have a number of useful properties: e.g., if F → Pr×S
is a coherent sheaf flat over S (here we actually need S reduced), then the
Hilbert polynomial hFs

(t) is locally constant in s; if f : X → Y a flat morphism
of irreducible scheme of finite type over a field K, then the relative dimension is
constant.

As we have seen, the notion of family allows us to define a functor from
our category, Schemes, to the category of Set, which in literature is called the
Moduli-Problem Functor.

Let us recall that for any scheme M we can define its functor of points:

M : (Schemes)→ (Sets)
S → HomSch(S,M)

so called because M(Spec(C)) is in bijection with the closed point of M . In the
”Moduli Spaces and Stables Bundles” section we have learnt that functor of
points determines uniquely the scheme structure on M up to isomorphism. To
sum up, seeking for a geometric structure on the set M amounts to look for a
scheme M whose functor of point is isomorphic to the Moduli-Problem Functor
M. If such an M exist we say that M is representable.

It is usually a difficult task finding such a scheme M and in many cases of
geometric interest there is no hope for the existence of the moduli space in the
category of schemes, and one is obliged to enlarge the category to more general
objects as stacks. Moreover, even when we know that the moduli space exists
and is a scheme M , this is quite difficult to describe: it will be reducible and

1We note that in this case E is automatically flat over S because is locally free.
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very singular and with a lot of components2. So, the natural thing to do is
starting study its local property..

2 Deformation Theory

The main tool we have to study the local properties of a moduli space is
Deformation Theory. Suppose we have M and [χ] ∈ M , where [χ] represents,
for example, an isomorphism class of (stable) vector bundle or an isomorphism
class of embedded varieties in a certain fixed variety X. We may wonder if [χ] is
or not a smooth point of M and what is the dimension of M in [χ]. To answer
these questions its enough to study M ”near” [χ]. In pratice we will study a
functor very similar to M, but we restrict our attention to consider families
over fat points, rather than arbitrary schemes.

Definition 1. Denote by Art the category of Artin Local C with residue field
C. In particular we denote by An = C[x]/(xn+1) and by Bn = Spec(An).

Definition 2. Let F be a functor:

F : Art→ Sets
A→ F (Spec(A))

we say F is a deformation functor if F (Spec(C)) = one point.

Example 1. 1. Let : Schs→ Sets be the functor:

S →
{

isomorphism classes of
vector bundle E → X × S

}
.

Let us fix a vector bundle E0 → X. The functor of infinitesimal deformation
of E0 associated to F is defined by:

DefE0 : Art→ Sets

A→ F (Spec(A))×F (B0) {E0}

where here B0 = Spec(C) according to the notation of the previous defi-
nition.

2. Let F be a coherent sheaf over X, we define DefF in the following way:
for each A ∈ Art

A→


isomorphism classes of

FA

X × Spec(A)

s.t FA is flat over A
and FA ×A C ∼= F


3. Let Y ⊂ X be a closed subscheme of a scheme X. We define the functor of

infinitesimal embedded deformations of Y in the following way: for each
A ∈ Art

2To be precise we should mention the difference between fine moduli space and coarse
moduli space, but as we are not interested in the global study, we are not going into this.
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A→
{

isomorphism classes of
YA ⊂ X × Spec(A)

s.t.
YA is flat over A
and YA ×A C ∼= Y

}
4. Let X be a nonsingular variety over C (e.g. a complex manifold, a pro-

jective complex variety), we define the infinitesimal deformation of X in
the following way: for each A ∈ Art

A→


isomorphism classes of

X XA

Spec(A)

s.t.
X → XA is a closed embedding
XA is flat over A
and XA ×A C ∼= X


Remark 1. We need to remark that in Examples 1 and 2, and more general every
time we look at infinitesimal deformations of an algebraic-geometric structure
which has non trivial automorphisms, we have to pay attention that the one we
gave is not quite the correct definition of deformation functor. To be precise
we have to say that an infinitesimal deformation is the data (e.g. in 2) of a flat
family FA → Spec(A) together with a fixed isomorphism φ : FA ×A C → F .;
i.e. we think of associating to A an isomorphism class of triples (F, φ, FA) such
that the following diagram

F 'φ FA ×Spec(A) Spec(C) FA

Spec(C) Spec(A)

commutes. We say that two such triples (F ′, φ′, F ′A) and (F ′′, φ′′, F ′′A) F ′A and
F ′′A are isomorphic if and only if there exists f : F ′A → F ′′A isomorphism of
sheaves over X × Spec(A) such that f |0 ◦ φ′ = φ′′. We will see later in an
example while it is important to pay attention.

3 First order deformations: the classical approach

We defined in the previous section the infinitesimal deformations of an object
χ as the flat families over Spec(A) with A ∈ Art. We moreover define:

Definition 3. curvilinear deformations the deformations over the ringsAn,
or equivalently over the fat points Bn;

first order deformation the deformations over A1 = C[x]/(x2) or equiva-
lently over B1. These are often called deformations over the dual number.

Given a deformation functor F we call its firts order deformations tangent
space to F and write F (A1) = TF. The reason why it make sense to say ”tangent
space” is the following exercise:

Exercise 1. Let M be a representable functor and M its moduli space. Then

M(B1) = {(m, v) |m ∈M and v ∈ TmM} ,
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where TmM is the Zariski tangent space (mm/m
2
m)∗ (Hint: an element of the

Zariski tangent space is the same of a morphism.) ϕ : OM,m → C⊕ Cx.

Let’s now study the first order deformations for the deformations functor
listed above.

Proposition 1. Let F denote the functor of embedded deformations Z ⊂ X
and let I ⊂ OX be the ideal sheaf of Z in X. Then the first order deformations
are in one-to-one correspondence with the global sections of the normal sheaf:

F (A1) = H0(Z,NZ) = HomX(I,OX/I).

Proof. [2] We want to describe the set:

F (A1) =

{
isomorphism classes of
Z1 ⊂ X ×B1

s.t.
Z1 is flat over B1

and Z1 ×A1 C ∼= Z

}
.

First of all, we note that this set is non empty because it contains at least the
trivial deformation Z ×B1 ⊂ X ×X1, which at the level of (sheaf) algebras is

I ⊗C C[t]/(t2) = I[t]/(t2) ⊆ OX [t]/(t2).

We can observe that as OX module OX [t]/(t2) = OX ⊕ tOX , so any element3

can be written as x+ ty. Now, given a first order deformation IB1 ⊂ OX [t]/(t2),
if this is not the trivial one, we are not able to associate to each x ∈ I an unique
y ∈ OX such that x+ty ∈ IB1

reduces to x modulo t. However, to such a lifting
which reduce to x modulo t differ by an element in I, because by a chaising
diagram the flatness of ZB1

implies the exactness of the sequence

0→ I → IB1 → I → 0.

This means that for every first order deformation we have a well defined mor-
phism of sheaves φ : I → OX/I, i.e. φ ∈ HomX(I,OX/I). 4 Conversely, given
a map φ ∈ HomX(I,OX/I), we define

IB1
=
{
f + tφ̃(f) | f ∈ I, φ̃(f) ∈ OX is any lift of φ(f) ∈ OX/I

}
.

It is easy to verify the sheaf ideal so definied is flat over A1 and reduces to
I mod t. To conclude the proof is now enough to check this constructions are
inverse each other.

Proposition 2. Let X be a nonsingular variety over C, (a complex manifold)
then the first order deformation are in one to one correspondence with the ele-
ments of H1(X, TX).

Proof. [2] As we are supposing X is non singular, we can think to H1(X, TX) as
the Čech cohomology. Given a deformation X ′ its restrictions to affine subsets
of an open covering of X are deformations U ′i isomorphic to the trivial one, i.e.

3We should here interpret the word ”element” stalkwise and each morphism is a morphism
of sheaves

4We may observe that this is exactly the same construction that we do when we compute the
tangent space of the Grasmannian in a point, indeed in that case we conclude TL Gr(k, V ) =
Hom(L, V/L)
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we can chose ϕi : Ui×C B1 → U ′i . (This is non trivial to see) On the overlaps, if
we denote by B the coordinate ring of Uij we have ϕ−1j ◦ϕi is an automorphism

of B[t]/(t2) which reduces to the identity mod t. This means (after a bit of
work) ϕ−1j ◦ ϕi(b0 + tb1) = b0 + t(b1 + θij(b0)) and it comes out that θij has to

belong to H0(Uij , TX) and satisfy the cocycle condition on triple intersections.
Moreover it is possible to check that chosing a different isomorphism with the
trivial deformation on the opens of the covering, we get a collection of derivation
on Uij which differs from the previous one by an element in Č0(U , TX). Viceversa
use the θij defined on the overlaps to glue together local trivial deformation of
X to a global nontrivial one.

Proposition 3. The first order deformations with fixed isomorphism with the
central fiber of a coherent sheaf F or of a vector bundle E over X are in one
to one correspondence with Ext1X(F ,F). If E is a vector bundle this is just
H1(X, End(E)).

Proof. [2] We give the proof in terms of coherent sheaves but the argument for
vector bundles is the same. Given a first order deformation F ′, tensoring over
A1 by F ′ the exact sequence

0→ C→ A1 → C→ 0

we get an exact sequence

0→ F → F ′ → F → 0. (1)

As we are looking at the functor with fixed isomorphism with the central fiber,
two deformations F ′ → F ′′ are isomorphic if and only if the isomorphism of
OX ⊗ A1 reduces to the identity. This condition ensures that the map from
F (B1) and Ext1X(F ,F) defined associating to each infinitesimal deformation (2)
is well defined and injective. Viceversa, given an equivalence class of extension:

0 F F ′ F 0
f g

we define a first order deformation of F puttng a OX ⊗A1-module structure on
F , i.e. defining the multiplication by t in the following way t = f ◦ g : F ′ → F ′.
Check that this map is well defined and injective to conclude the proof.

4 Obstructions

After studying the first order deformations, it is natural to look at the so
called ”obstructions” to deformations. I won’t give the precise definition of ob-
struction and I won’t be able to explain what they essentially are and where
they come from. However, I will try to communicate an idea and to motivate
why the study of obstructions is interesting. Given an element (infinitesimal
deformation) ξA ∈ Defχ(A) for some A ∈ Art (e.g. ξ an infinitesimal deforma-
tion over A of a coherent sheaf or of a non singular variety or of an embedded
variety into the ambient space) and a surjective morphism of local artinian rings
B � A, is it possible to find an element ξB ∈ Defχ(B) which extends ξA? For
example, if XA is an infinitesimal deformation of a nonsingular variety, does a
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deformation XB which extends XA exists? In other words, an XB such that
the following diagram is cartesian?

XA XB

Spec(A) Spec(B)

⇒ XB ×Spec(A) Spec(B) = XA.

The answer depends from the obstructions. Given a resonable deformation
functor, we always find a vector space V , somehow natural. such that for any
surjective morphism ϕ : B � A there is a map vϕ : Defξ(A) → V which is
zero if and only if the deformation XA admits an extension over B. In other
words, (V, {vϕ}) tells when there is an obstruction to the lifting. Moreover, if
my geometric object χ represents an isomorphism class which is a point in a
certain moduli space M , we should interpret obstructions to Defχ as a ”measure
of how singular is M at the point χ”. More precisely,

dimC TχM ≥ dimMχ ≥ dimC TχM − dimC V

where according to the notation above V is the vector space which contains the
obstructions to the infinitesimal deformations of χ.

Example 2. 1. Let F be a coherent sheaf on X and F1 a first order defor-
mation. We want to extend this deformation to a 2-order deformation,
i.e., we want a coherent sheaf

F2

X ×B2

F2 flat over B2

s.t F2 ×A2 A1
∼= F1

and F2 ×A2
C ∼= F

Such an F2 should fill in the following diagram:

0 0

0 F F1 F 0 e ∈ Ext1(F ,F)

0 F F2 F1 0 ẽ ∈ Ext1(F1,F)

F F

0 0

t

Clearly, the exsistence of F2 is equivalent to the exsistence of ẽ, but the
map between the ext-groups is not surjective, indeed from the Ext-long
exact sequence, we have:

· · · Ext1(F1,F) Ext1(F, F ) Ext2(F ,F) · · ·δ
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which means we have an obstruction to extend a first order deformation
e given by δe ∈ Ext2(F ,F), which is our vector space V in this example.
Indeed it is possible to show that not only the obstructions to lift the first
order deformations, but all obstructions lies in that vector space. Exactly
the same argument holds for vector bundles and in that case the second
Ext group is simply H2(End(E)).

2. Let X be a non singular complex variety. We have seen that the first order
deformations are in one-to-one correspondende with {θij}i,j ∈ Ȟ

1(X, TX),
where each θij is the data of an authomorphism Uij ×B1 → Uij ×B1. For
each Uij we can chose a lifting θ′ij : Uij×B2 → Uij×B2. Now the collection
{θ′}i,j define a lifting of our deformation if and only if θ′ij restrict to θij on
B1 for all ij θ′ijθ

′
jk = θ′ik. In general, the local liftings define a 2-cocycle

θijk = θ′ijθ
′
jkθ
′−1
ik ∈ Γ(Uijk, TX)

and chosing a different lifting we find a new 2-cocycle with the same coho-
moly of this one. If its cohomoly class is trivial, then I have a canonical way
to lift my first order deformation, otherwise [{θijk} i, j, k] ∈ H2(X, TX)
represents the obsructions to the existence of the higher deformation.

3. Looking at embedded deformations Z ⊂ X, we have seen that the first
order deformations of Z in X are in one-to-one correspondence with global
sections of the normal bundle H0(Z,NZ). Here, the problem of lifting
deformations comes from the fact that the normal bundle is a quotient
and not a subbundle of TX .

Upshot: there exist a natural obstruction
to lift deformation lies in H1(Z,NZ)

.

Summing up what we have seen in the examples:

non-singular varieties

H0(X, TX): automorphisms of X
H1(X, TX): first order deformations of X
H2(X, TX): obstructions of DefX

embedded deformations

We don’t have automorphisms of Z as embedded variety
H0(Z,NZ): first order deformations of Z ⊂ X
H1(Z,NZ): obstructions of DefZ⊂X := HilbZ,X

vector bundles

H0(X, End(E): automorphisms of E
H1(X, End(E): first order deformations of E
H2(X, End(E): obstructions of DefE

Remark 2. We have to note that in Example 1 and Example 3, according to the
definition of deformation functors, we fixed the isomorphism with the central
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fiber. This is exactly what we need to avoid problems with the automorphisms
of the geometric structure we are deforming. Indeed, the automorphisms are the
guys which mess up the situation and obstruct the existence of moduli space.
Remember for example, studying vector bundle we restrict our attention to
stables one, which don’t have automorphisms, when we want a moduli space.
Let’s see what happen when we have automorphisms with an example.

Example 3. Consider the vector bundle E = O(−1) ⊕ O(1) on P1. Then we
have:

H1(End(E)) = H1(O(−2)) ∼= C,

which is the space of first order deformation with fixed isomorphism with the
central fiber. However, if we don’t fix the isomorphism with the central fiber,
each automorphism α ∈ Aut(E) will bring a first order deformation into an
isomorphic one! Then, to understend the first order deformation/tangent space
of DefE , we have to care about the action of Aut(E) on H1(End(E)).

It comes out that there is a C∗ ⊂ Aut(E) acting non trivially on H1(End(E)).

More precisely, it acts with weight 1 via

(
λ 0
0 λ−1

)
. It follows that

DefE(B1) = C/C∗.

5 DGLA philosophy

The DGLA approach to deformation problems is essentially based on the
following principle: ”in characteristic 0, each deformation problem is controlled
by a differential graded Lie algebra”. This is not a theorem in this version,
however if we look to all the examples we have seen as far such a DGLA actually
exists. This pratically means that there exists a differential graded Lie algebra
(L, d, [−,−]) such that DefL ∼= Defχ, where the deformation functor associate
to L is defined in the following way:

A ∈ Art→
{
x ∈ L1 ⊗mA | dx+ 1

2 [x, x] = 0
}

exp(L0 ⊗mA)

where we are taking the quotien for a suitable action (called in literature gauge
action) of exp(L0 ⊗mA) on the set of Maurer-Cartan elements.

As there exists a full theory about DefL, once we know the DGLA which
controls the deformation problem we are studying, we have a kind of general
recipe to compute the first order deformations and the space where obstruction
lie. Indeed, DefL(A1) ∼= H1(L) and the obstructions to lift a Maurer-Cartan
element lie in H2(L), where the cohomology is taken with respect the differential
d of L. In our examples:

deformations of non singular varieties Deformations are controlled by Č∗(U , Tx)
where the bracket is the bracket of vector field and the differential is the
Čech differential.

deformations of vector bundles Deformations are controlled by Č∗(U , End(E))
where the bracket is the commutator of the composition and the differen-
tial is the Čech differential.
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deformations of smooth embedded subvarieties Deformations are controlled
by Č∗(U , TZ → TX) where the DGLA here is the homotopy fiber of the
inclusion, the bracket is the homotopy bracket and the differential is the
Čech differential.

We won’t say more about this approach, but the interested ones will find
many references avaiable on the web about the subject.

6 Kuranishi-Model

Historically, the Kuranishi model was studied in the contest of deformations
of complex manifolds. Here we call deformation of the complex manifold X the
data of a map π : χ → T, proper and flat between complex connected spaces
such that π−1(t0) = X0

∼= X and small deformation a germ of a deformation,
i.e., π : (χ,X0)→ (T, t0).

If, given a complex manifold Y there exists a small deformation (Y, Y ) →
(B(Y ), 0) such that each other small deformation is obtained by this one via pull
back, we call it Kuranishi family. We can note that by the requested property,
this is exactly what we would call ”a germ of the moduli space.” It comes
out that, if Y ic compact complex, (B(Y ), 0) is unique up to (non canonical)
isomorphism, and is a germ of analytic subspace of the vector space H1(Y, TY ),
inverse image of the origin under a local holomorphic map (called Kuranishi
map and denoted by k)

k : H1(Y, TY )→ H2(Y, TY ).

More generally, in the Kuranishi model we want to see ”the germ of the
moduli space” as the zero locus of the Kuranishi map

k : H1(· · · ) = ”tangent”→ H2(· · · ) = ”obstructions.”

It says us, morally, there are ”intrinsic” local equation for the germ of moduli
determined by the tangent and the obstructions. This approach is, roughly
speaking, the local version of Behrend-Fantechi tangent-obstruction complex.
See [3] or [4] for actual explanations!

Remark 3. An importante tool when doing deformation theory is the so called
T 1-lifting technique. The philosophy is that, to extend an equivalence from a
family over An to one over An+1, it is enough to understand deformations “side-
ways” from An to An×A1. For many reason we do not treat this argument here,
but we reccomend to read the appendix of [1] for a good expository treatment.
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