
Complex manifolds and the Kähler condition

1 Almost Complex structures

Definition 1.1. Consider a 2m-dimensional real manifold, M . A complex chart
on M is a pair (U,ψ), with U open in M and ψ : U → Cm a diffeomorphism
between U and some open set in Cm. In this way, ψ defines a set of complex co-
ordinates z1, . . . , zm on U . If (U1, ψ1) and (U2, ψ2) are two complex charts, the
transition function between them is ψ12 : ψ1(U1 ∩ U2) → ψ2(U1 ∩ U2), defined
by ψ12 = ψ2 ◦ψ−1

1 . M is a complex manifold if it has an atlas of complex charts
(U, φ), with all the transition functions holomorphic.

Definition 1.2. An almost complex structure on a smooth even-dimensional
real manifold M is a smoothly varying endomorphism, J , on each tangent space,
satisfying J2 = −Id.

Example 1.3. A complex manifold M has a canonical almost complex structure.
Choose holomorphic coordinates zα = xα + iyα about p. The smooth tangent
space of M is generated by { ∂

∂xα ,
∂
∂yα , define J

(
∂
∂xα

)
= ∂

∂yα , J( ∂
∂yα ) = − ∂

∂xα

and extend linearly.

Exercise 1. Prove that the canonical almost complex structure, J , on a complex
manifold is independent of the holomorphic coordinates chosen.

Definition 1.4. Let M be an almost complex manifold. Given any R-vector
bundle overM , say (E,M, π), we may consider the bundle with fibres π−1(p)⊗C.
The complexified bundle EC is a C-vector bundle with rank equal to rank(E).

For any almost complex manifold we have the rank 2n R-bundles TM and
it’s dual T ?M . We call TMC and T ?MC the complexified tangent and cotangent
bundles respectively.

Recall that J is an endomorphism of TpM for each p. The map J(α)(X) :=
α(J(X)) for a 1−form α, is an endomorphism of T ?pM satisfying J2 = −Id. J
extends by linearity to endomorphisms of TMC and T ?MC (still with J2 = −Id).
Crucially the complexified cotangent space has a direct sum decomposition by
J-eigenspaces.

Proposition 1.5. Let J be an endomorphism of T ?MC with J2 = −Id. Let
Λ(1,0), Λ(0,1) be the J-eigenspaces of i,−i respectively. Then

T ?MC = Λ(1,0) ⊕ Λ(0,1)

Proof. Define Σ : T ?MC → Λ(1,0)⊕Λ(0,1) by Σ(X) = 1
2 (X− iJX,X+ iJX) and

Φ : Λ(1,0) ⊕ Λ(0,1) → T ?MC by Φ(X,Y ) = X + Y . Σ and Φ are inverse linear
maps.
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Remark 1.6. The complexified tangent space (TM)C also admits a decomposi-
tion into i,−i eigenspaces by the same argument. We denote this decomposition
by TMC = T (1,0) ⊕ T (0,1).

Proposition 1.7. Λ(1,0) is the annihilator of T (0,1).

Proof. Take X ∈ T (0,1) and α ∈ Λ(1,0). Then (Jα)X = iαX since α is in the i
eigenspace. But we also have (Jα)X := α(JX) = α(−iX) = −iαX since X is
in the −i eigenspace. So we have that αX = 0.

We get a corresponding decomposition of the kth wedge power of T ?MC:

Λk(T ?MC) =
⊕
p+q=k

Λp(Λ(1,0))⊗ Λq(Λ(0,1))

To study forms on almost complex manifolds we need to build up quite a bit of
notation:

Λ(p,q) := Λp(Λ(1,0))⊗ Λq(Λ(0,1)) is the (p,q)-cotangent bundle of M

Ak(M) := Γ(Λk(T ?MC)) is the space of k-forms on M

A(p,q)(M) := Γ(
∧(p,q)

) is the space of (p,q)-forms on M .

2 Integrability

We have studied forms on an almost complex manifold in some detail. Now it
is time to analyse when an almost complex manifold is induced by a complex
structure, and in this case define Dolbeault cohomology. First some useful
definitions.

The Lie bracket of vector fields from differential geometry will be used to
study almost complex structures. If we think of vector fields as smooth deriva-
tions then we may define it as a commutator by [X,Y ](f) = X(Y (f))−Y (X(f)).
One geometric interpretation of the Lie bracket is that it measures how much
the flow lines for X and Y fail to commute (see [1, Chapter 20]).

Definition 2.1. The Nijenhuis tensor of an almost complex manifold (M,J)
is defined

N(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ]

We can think of this as somehow measuring the ”torsion” of the almost complex
structure.

We saw in Section 1 that every complex manifold admits a canonical almost
complex structure. The question we now ask is, given some almost complex
structure on a manifold, when has it arisen from holomorphic co-ordinates in
this way?

Well, if it has we know that A(0,1) is spanned locally by α =
∑
fidz

i for
smooth functions fi. Then dα =

∑
dfi ∧ dzi which is in(

A(1,0) ⊕A(0,1)
)
∧ A(1,0) = A(2,0) ⊕A(1,1)

So for complex manifolds, M ,

d
(
A(1,0) (M)

)
⊆ A(2,0)(M)⊕A(1,1)(M)
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Proposition 2.2. For an almost complex manifold (M,J), TFAE:

1. d
(
A(1,0)(M)

)
⊆ A(2,0)(M)⊕A(1,1)(M)

2. Γ
(
T (1,0)

)
is closed under taking Lie brackets.

3. N ≡ 0

Proof. Recall that X 7→ (X−iJX,X+iJX) gives an isomorphism Σ : (TM)C →
T (1,0) ⊕ T (0,1) (see the proof of proposition 1.5 and following remark).

(1) ⇐⇒ (2) Exercise 2.
Hint: let α ∈ A(1,0) and use Cartan’s formula 2dα(X,Y ) = X(αY ) −
Y (αX)− α[X,Y ].

(2) ⇐⇒ (3) Let X,Y ∈ Γ(TMC), then X − iJX, Y − iJY ∈ Γ(T (1,0)) and
by assumption so is [X − iJX, Y − iJY ], equivalently [X − iJX, Y −
iJY ] + iJ [X − iJX, Y − iJY ] ≡ 0. Expanding out the terms of each
Lie bracket shows that [X − iJX, Y − iJY ] + iJ [X − iJX, Y − iJY ] =
−N(X,Y ) − iJ(N(X,Y )). So N ≡ 0 is equivalent to the expression on
the left vanishing for all X − iJX, Y − iJY ∈ Γ(TMC), i.e. (2).

If these conditions hold, we say that J is integrable.

Theorem 2.3 (Newlander-Nierenberg). An integrable almost complex structure
is induced by a complex structure. That is, the above conditions are sufficient
(as well as necessary) for a manifold to be complex.

Recall that the usual exterior derivative operator for smooth manifolds d
maps k forms to k + 1 forms. We extend this linearly to sections of the com-
plexified cotangent bundle to get an operator.

d : Ak(M)→ Ak+1(M)

Let Π(p,q) be the projection of Λk(T ?M)C to Λ(p,q). Define ∂ = Π(p+1,q) ◦ d
and ∂̄ = Π(p,q+1) ◦ d, then

∂ : A(p,q)(M)→ A(p+1,q)(M)

∂̄ : A(p,q)(M)→ A(p,q+1)(M)

For all k ≥ 0, d = ∂ + ∂̄ : Ak(M)→ Ak+1(M)
3)⇔ 4) For the right to left implication note that by definition ∂(A(1,0)(M)) ⊆

A(2,0)(M) and ∂̄(A(1,0)(M)) ⊆ A(1,1)(M). For the reverse implication see [2,
2.6.15].

By expanding d2 = (∂ + ∂̄)2 = 0 on A(p,q) and decomposing the image into
(p+ 2, q), (p+ 1, q+ 1) and (p, q+ 2) forms, we see that for an integrable almost
complex structure

∂2 = ∂∂̄ − ∂̄∂ = ∂̄2 = 0

In this scenario we may take the cohomology of the following sequence:

...
∂̄−→ A(p,q−1)(M)

∂̄−→ A(p,q)(M)
∂̄−→ A(p,q+1)(M)

∂̄−→ ...
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i.e we define the quotient vector spaces: H(p,q)(M) = ker(∂̄:A(p,q)(M)→A(p,q+1)(M))

Im(∂̄:A(p−1,q)(M)→A(p,q)(M))

called the Dolbeault cohomology of M , which depends on the complex struc-
ture.

Remark 2.4. Not all even-dimensional smooth manifolds admit an almost com-
plex structure, S4 with the standard smooth structure is a counterexample.

3 The Kähler Condition

Let (M,J) be an almost complex manifold and suppose in addition we have a
Riemannian metric g such that J is an orthogonal transformation with respect
to g. In symbols: For any vector fields X and Y we have g(X,Y ) = g(JX, JY ).
In this case the triple (M, g, J) is called a Hermitian Manifold.

Now we define a non-degenerate 2-form ω(X,Y ) = g(JX, Y ) (ω is called
non-degenerate if ω(X,Y ) = 0 ∀X ⇒ Y = 0). This allows us to state the
Kähler condition:

Definition 3.1. Suppose that (M, g, J) is a Hermitian manifold if the associ-
ated 2-form ω is closed then we call M a Kähler manifold.

For Kähler (and most generally symplectic) manifolds the existance of such
an ω imposes topological restrictions on even-dimensional (orientable) manifolds
admitting such structures.

Proposition 3.2. Let M be a 2n-dimensional manifold with a closed non-
degenerate 2-form ω. Then the even dimensional de Rham cohomology groups
have strictly positive dimension.

Proof. The 2-form omega is non-degenerate, which is equivalent to the form ωn

being everywhere non-zero, and hence a volume form. If this form were dγ for
an (n-1)-form γ then by Stoke’s theorem the integral of ωn over M would be 0,
hence this form represents a non-trivial cohomology class. Recall that the wedge
map on forms descends to a product of cohomology groups so that [ωn] = [ω]n,
in particular we must have [ω]k 6= 0 for each k. We have a non-zero element of
H2k(M) for k = 1, .., n.

4 Exercises

1. Prove that the canonical almost complex structure, J , on a complex man-
ifold is independent of the holomorphic coordinates chosen.

2. Show that the following two conditions for an almost complex structure
to be a complex structure are equivalent:

d
(
Γ
(
Λ0,1

))
⊆ Γ

(
Λ2,0 ⊕ Λ1,1

)
(1)

X,Y ∈ Γ
(
T 1,0

)
=⇒ [X,Y ] ∈ Γ

(
T 1,0

)
(2)

3. Consider an almost complex structure on R4 given by Λ1,0 = 〈σ1, σ2〉
where σ1 = dz1 + adz̄2, σ2 = dz2 − adz̄1, and a is a smooth function of
z1 and z2.
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(a) Check Λ1,0∩Λ1,0 = 0, so this does define an almost complex structure

(b) Show that condition (1) in exercise 2 is equivalent to

∂a

∂z̄1
+ a

∂a

∂z2
= 0 =

∂a

∂z̄2
− a ∂a

∂z1

(c) Deduce that T 0,1 =

〈
∂

∂z̄1
+ a

∂

∂z2
,
∂

∂z̄2
− a ∂

∂z1

〉
(d) The metric associated to the standard inner product on R4 is almost

Hermitian, i.e. g(JX, JY ) = g(X,Y ) for all X,Y ∈ TmR4. Show
that this is equivalent to Λ1,0 being isotropic for the complexification
of g, i.e. g(σi, σj) = 0 for all i, j.

(e) Express J as a 4× 4 matrix relative to
∂

∂x1
,
∂

∂y1
,
∂

∂x2
,
∂

∂y2

4. Show that, for ω a Hermitian form, ω(X − iJX, Y − iJY ) = 0.

5. Prove the following lemma:
If ∇Xω ∈ Λ2 with ω ∈ Λ1,1 then ∇Xω ∈ Λ2,0⊕Λ0,2, i.e. ∇Xω(JX, JY ) =
−∇Xω(X,Y )
Starting hint: (∇Xω)(Y, Z) = g ((∇XJ)Y,Z)

6. Show that projective manifolds are Kähler. The idea is to show that (com-
plex) projective space is Kähler, which requires us to define the Fubini-
Study Metric structure on Pn.
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