
Lefschetz pencils in algebraic and symplectic

geometry

1 Lefschetz hyperplane theorem

Our goal is to understand the topology of a projective variety by analysing its
“hyperplane slices”.

Remark 1.1. In those notes, we will usually assume that considered manifolds
are complex projective, but except for the Hard Lefschetz theorem everything
works well also for symplectic manifolds.

All the cohomologies in the notes will be defined over Q. First, we state the
celebrated Lefschetz hyperplane theorem.

Theorem 1.2 (Lefschetz hyperplane theorem). Let X ⊆ Pm be a smooth pro-
jective variety of dimension n, and let H be a hyperplane such that M := H∩X
is smooth. Then the map

Hi(X,Q)→ Hi(M,Q)

induced by the inclusion of i : M ⊆ X is an isomorphism for i ≤ n − 2 and is
injective for i = n− 1.

It implies the following corollary.

Corollary 1.3. With the assumptions as above, the following holds:

Hk(H)
i∗→
'
Hk(X), for k < n− 1,

Hn−1(H)
i∗
�Hn−1(X), for k = n− 1,

Hk(H)
i∗←
'
Hk+2(X), for k > n− 1,

where the third map is defined via Poincare duality.

Exercise 1.4. Prove the corollary, using the Lefschetz hyperplane theorem.

Sketch of the proof based on Morse theory. LetH = {s = 0}, where s ∈ H0(X,OX(1)).
Since OX(1) is ample, there exists a hermitian metric h on it (the pullback of
the Fubini-study metric), such that i

2πF∇ = i
2π∂∂ log h is positive, where F∇ is

the curvature. One can prove that it is possible to choose some other metric so
that i

2π∂∂ log |s|−2 is positive.
Then, easy calculation shows, that

φ(x) := log |s|−2

has at least n negative eigenvalues at critical points. Morse theory implies that
X is obtained from H by adding handles of dim ≤ n. This concludes the
proof.
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Let f : X → C be a holomorphic function. We say that x ∈ X is an ordinary
double point (ODP), if Hess(f) is nondegenerate at x.

Definition 1.5. Let L be a holomorphic line bundle on X. A Lefschetz pencil
on X is a family of distinct hypersurfaces Ht = {p ∈ X | st(p) = 0} for t ∈ P1

and st ∈ H0(X,L), satisfying the following conditions

• st = s0 + ts∞ for t ∈ P1.

• Only finitely many hypersurfaces Ht are singular. Any singular Ht may
have only one singularity and it must be an ODP.

• The base locus B :=
⋂
t∈P1 Xt is smooth.

The picture, which is useful to have in mind, is that of the pencils for an
embedded variety X ⊆ Pn as collections of hyperplanes in Pn.

The first condition says that the Lefschetz pencils correspond to lines in
P(H0(X,L)∧). The second and the third one say that Lefschety pencils are
families of hypersurfaces, which are ’reasonably’ general.

Note that the equation st = s0 + ts∞, implies

B = X0 ∩X∞.

Using a dimension counting argument and the discriminant variety, one can
show that every smooth hyperplane section H ∩X ⊆ X gives a Lefschetz pencil
such that X0 = H ∩X.

A Lefschetz pencil gives us a natural rational map φ : X 99K P1 defined by

x 7→ (s0(x) : s∞(x)).

It is defined outside of the subscheme B. Note that the closure of the fiber
φ−1(t) for t ∈ P1 is exactly the hypersurface Ht. One could define Lefschetz
pencils as rational maps X 99K P1, with the singularities of fibers satisfying
beforementioned properties.

In order to make the map well-defined, we consider the blow-up X̃ of X
along B. Then φ extends to a well defined map φ̃ : X̃ → P1.

Exercise 1.6. Show that H∗(X̃) = H∗(X)⊕H∗−2(B).

2 Local study of ordinary double points

Analogously to real Morse theory, every holomorphic function around an ordi-
nary double points is of the form

f =
∑

z2i ,

where zi are suitable coordinates. Let us consider the fiber around a critical
point Xt = {

∑
z2i = t} for some t ∈ C.

Definition 2.1. We define a vanishing cycle for t = seiφ ∈ C, where s ∈ R, to
be the sphere

Lt := {(z1, . . . , zn) | zi =
√
sei

φ
2 , xi ∈ R,

∑
x2i = 1} ⊆ Xt.
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Figure 1: Map f

We define a Lefschetz thimble ∆i to be the union of all vanishing spheres at
some real path between 0 and t. Note that ∆i depends on the choice of the
path.

One can check that a vanishing cycle Lt is Lagrangian in Xt.

Proposition 2.2. Assume that 0 and∞ are regular values of f . Let x1, . . . , xk ∈
P1 be all critical points. Connect 0 with x1, . . . , xk by some real paths, and define
Li together with ∆i for 1 ≤ i ≤ k to be the Lefschetz pencil and the Lefschetz
thimble at 0, respectively, with respect to the ordinary double point pi. Then
X̃\X∞ is homotopic to

⋃
X0 ∪Li ∆i.

X0

∆1

L1

∆i

Li

Figure 2: An example of
⋃
X0 ∪Li ∆i

Sketch of the proof. Let pi be the path connecting 0 and xi. Define a skeleton
S :=

⋃
pi. Then, the standard “run a flow” argument implies that X̃\X∞ is

homotopic to X̃|S . Similarily, we retract every fiber Xt over t ∈ S to
⋃
X0 ∪Li

∆i.

In the case when X = X̃, the proposition above implies the Lefschetz hyper-
plane theorem. In general, one can easily reprove Lefschetz hyperplane theorem
by a careful inductive argument comparing X and X̃.
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3 Monodromy

Choose a regular point t ∈ P1 of f . Assume that t 6= ∞. Let P ⊆ P1 be the
subset of critical points. We would like to construct the monodromy action. It
would be an action of the fundamental group π(P1\P ) on Hi(Xt).

Definition 3.1. Take a path p ∈ π(P1\P ) such that p(0) = p(1) = t and a
cycle Z ∈ Hi(Xt). We define p(Z) ∈ Hi(Xt), the image of Z under the action
of p, in the following way.

We move the cycle Z along the path p to obtain a family of cycles Zr ∈
Hi(Xp(r)) for r ∈ [0, 1], where Z0 = Z. We can do it by e.g. considering a lifted
normalized geodesics flow (or by using Ehremann’s theorem). We define p(Z) to
be the class [Z1] in Hi(Xt). This class does not depend on the choice of cycles
Zr or of the representative of the class [p] in π(P1\P ), because any two choices
would be homotopic.

In other words, we move a cycle around a path and observe which cycle
it deforms to, when we come back. If a path can be contracted, then the
monodromy action of it is trivial. Note that it is crucial, that paths do not
cross critical points, because for such points the fibers Xt are not manifolds
(they are singular).

Remark 3.2. In the symplectic world, it is important to use the normalized flow
for “moving” cycles, to make sure that the symplectic form is preserved.

Let n be the complex dimension of X. One can use vanishing cycles to
express the action of monodromy on Hn−1(Xt) explicitly. Note that Xt has
real dimension 2n− 2.

Theorem 3.3 (Picard-Lefschetz formula). Take a class A ∈ Hn−1(Xt) on a
path p ∈ π(P1\P ) such that the interior of p contains only one critical point.
Let Lt be the vanishing cycle corresponding to this ordinary double point. Then

p(A) = A+ (A ∩ [Lt])[Lt],

where [Lt] ∈ Hn−1(Xt). Note that A ∩ [Lt] is a number.

The Picard-Lefschetz formula shows that the monodromy acts by just adding
a certain multiple of a vanishing cycle. In particular, the monodromy action on
a cycle is either trivial or has an infinite order.

Also, note the following fact.

Fact 3.4. Choose a fiber Xt. Then, the monodromy acts transitively on van-
ishing cycles of Xt obtained with respect to all ordinary double points.

4 Hard Lefschetz Theorem

Theorem 4.1 (Hard Lefschetz theorem). Let X be a projective variety, and let

ω ∈ H2(X) be the class of a hyperplane section. Then the map Hn−1(X)
∧ω−−→

Hn+1(X) is an isomorphism.

Let H be a hyperplane section of X. Extend H to a Lefschetz pencil X̃ →
P1, so that H = X0. We define Hn−1(Xt)van ⊆ Hn−1(Xt) to be a subgroup
generated by vanishing cycles. Using Hard Lefschetz theorem we would like to
prove the following two propositions.
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Proposition 4.2. Let X be a projective variety and H a hyperplane section.
Then

Hn−1(H) = j∗Hn+1(X)⊕Hn−1(Xt)van,

with j∗ : Hn+1(X)
∩H−−→ Hn−1(H).

Proposition 4.3. The intersection product

Hn−1(Xt)van ×Hn−1(Xt)van
∩−→ H0(Xt) ' Q

is nondegenerate.

First, we consider the following diagram.

Exercise 4.4. Confirm yourself that the following diagram commutes

Hn+1(X) Hn−1(H) Hn−1(X)

Hn−1(X) Hn+1(X)

∩H

'

i∗

'

∧ω

where i is the inclusion H ⊆ X.

Since ∧ω is an isomorphism, we get that

Hn−1(H) = j∗Hn+1(X)⊕ ker(i∗).

Thus, the first proposition follows from the following lemma.

Lemma 4.5. We have Hn−1(H)van = ker(i∗).

Proof. First, I claim it is enough to show that the restriction map

Hn−1(X̃)→ Hn−1(X̃\X∞) (1)

is surjective. Indeed, if we knew it, then we would have that ker(Hn−1(H)
i∗−→

Hn−1(X)) = ker(Hn−1(H)
i∗−→ Hn−1(X̃\X∞)). The latter group is generated

by vanishing cycles by Proposition 2.2.
In order to show (1), we consider the long exact sequence of cohomologies

for pairs:

. . . −→ Hn−1(X̃) −→ Hn−1(X̃\X∞) −→ Hn(X̃, X̃\X∞) −→ Hn(X̃) −→ . . . .

Let NX∞ be the normal bundle of X∞ inside X̃. We have

Hn(X̃, X̃\X∞) = Hn(NX∞, NX∞\X∞) = Hn−2(X∞),

where the first equality follows from the excision, and the second one from
Thom’s isomorphism theorem. Recall that Thom’s isomorphism theorem states
that Hk(E) ' Hk+r(E,E\X), where E is a real vector bundle of rank r over a
CW-complex X.

By a careful application of Proposition 2.2, we know that

Hn−2(X∞)→ Hn(X̃\X0),
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induced by the inclusion X∞ ⊆ X̃, is injective (be careful: we switched the role

of 0 and ∞!). In particular, Hn−2(X∞) → Hn(X̃) is also injective, and the

long exact sequence of cohomologies shows that Hn−1(X̃) → Hn−1(X̃\X∞) is
surjective. This concludes the proof of the lemma.

Now, consider the following lemma.

Lemma 4.6. It holds that j∗Hn+1(X) = (Hn−1(H)van)⊥, with j∗ : Hn+1(X)
∩H−−→

Hn−1(H) and ⊥ taken with respect to the intersection pairing Hn−1(Xt) ×
Hn−1(Xt)→ H0(Xt).

Together, with Proposition 4.2, this implies that

Hn−1(H) = Hn−1(H)van ⊕Hn−1(H)⊥van.

Hence Hn−1(H)van ∩ Hn−1(H)⊥van = ∅, and so the intersection product on
Hn−1(H)van is nondegenerate. This concludes the proof of Proposition 4.3.

The idea of the proof of the lemma is quite natural. By the Picard-Lefschetz
theorem, the group (Hn−1(H)van)⊥ consists of exactly those cycles which are
invariant under the monodromy action. Such cycles can be uniformly swept out
on the manifold to give us a global class.

The reader familiar with local systems should notice that applying the afore-
montioned strategy to Rn−1φ∗Q, where φ : X → P1 is the Lefschetz pencil, gives
a straightforward proof of the lemma.

Sketch of the proof of the lemma. First takeA ∈ j∗Hn+1(X) ⊆ Hn−1(H). Since
A is the restriction of a globally defined cycle on X, it must be invariant un-
der the action of monodromy. Thus, the Picard-Lefschetz formula shows that
A∩ [L] = 0 for all vanishing cycles L. This concludes one direction of the proof.

Now, take A ∈ (Hn−1(H)van)⊥. Without loss of generality, we may assume
that t =∞, and we sweep out this cycle along all “straight lines” from ∞ to 0,
to obtain an n+ 1-chain Ã. One can show that

∂Ã =
∑
〈τi−1 ◦ . . . ◦ τ1(A), Li〉Ai + C,

where τi and Li are the monodromy action and the vanishing cycle, respectively,
corresponding to the i-th ordinary double point, and C ∈ Hn−1(X0). One can
show that in our case C = 0, thus, since A is orthogonal to all vanishing cycles,
we get

∂Ã = 0.

Hence Ã ∈ Hn+1(X), and A = Ã ∩H, i.e. A ∈ j∗Hn+1(X).

Exercise 4.7. Assume that we don’t know that the Hard Lefschetz theorem
holds. Show that the intersection product on Hn−1(H)van is nondegenerate, if
and only if Hn−1(H) ' Hn−1(H)van ⊕ j∗Hn+1(X).

Remark 4.8. The exercise shows that in the case of sympletic manifolds, the
Hard Lefschetz theorem is equivalent to non degeneracy of the intersection prod-
uct on Hn−1(H)van. This doesn’t hold in general for symplectic manifolds.
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