
Mixed Hodge Structures

1 Introduction
In these notes we give an informal introduction to the theory of mixed Hodge
structures. Guided by the example of a nodal curve, we illustrate how naturally
mixed Hodge structures arise and, then, we describe how the cohomology of
a smooth variety admits such a rich structure. Finally, we state the Invariant
cycles theorem as an example where the theory of mixed Hodge structures is
used.

2 Linear Algebra and Hodge Theory
Consider a finite dimensional real vector space V , endowed with an almost
complex structure, i.e. an endomorphism J : V → V such that J2 = −id. Note
that such a V has even dimension and that its complexification admits a natural
decomposition. Indeed, let

VC := V ⊗R C,

and consider the C-linear extension of J to VC. It has eigenvalues ±i and,
according to its decomposition in eigenspaces, we have

VC = V 1,0 ⊕ V 0,1,

where V 1,0 denotes the eigenspace of i and V 0,1 the one of −i.
endowed with an almost complex structure, i.e. an endomorphism J : V → V

such that J2 = −id. First, note that V has even dimension. Moreover, we can
decompose its complexification in the obvious way. Indeed, let

VC := V ⊗R C,

and consider the C-linear extension of J to VC. It has eigenvalues ±i and,
according to its decomposition in eigenspaces, we have

VC = V 1,0 ⊕ V 0,1,

where V 1,0 denotes the eigenspace of i and V 0,1 the one of −i. Finally, complex
conjugation on VC induces an isomorphism between V 1,0 and V 0,1. This is
an example of a pure (real) Hodge structure of weight 1. Besides, Hodge
structures arise in many more complicated contexts. For instance, let X be an
m-dimensional compact oriented Riemannian manifold and consider the sheaf
of n-forms on X by AnX , with the exterior derivative d : AnX → An+1

X . Let us
define the Laplacian operator

∆d := dd∗ + d∗d,
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where d∗ = (−1)m(n−1)−1 ∗ d∗ : AnX → An−1
X and ∗ is the Hodge operator. Now,

consider the set of harmonic forms

Hn(X) = {α ∈ AnX such that ∆dα = 0} .

Then, there is a natural map

Hn(X) −→ Hn(X,R),

sending any harmonic form to its cohomology class. Thanks to the work of
Hodge, Kodaira et al, this map turns out to be an isomorphism of vector spaces,
hence

Hn(X) ' Hn(X,R).
Take a complex manifold X and consider the sheaf of complex n-forms (AnX , d),
which can be decomposed into the direct sum

AnX =
⊕
i+j=n

Ai,jX ,

whereAi,jX denotes the sheaf of (i, j)-forms and d = ∂+∂̄, where ∂ : Ai,jX → A
i+1,j
X

and ∂̄ : Ai,jX → A
i,j+1
X denote the Dolbeault operators. We may try to see if

H1(X) is even dimensional, but, unfortunately,

[J, d] 6= 0,

which means that J does not act on closed forms. The picture becomes much
nicer when we restrict to Kähler manifolds. Indeed, it turns out that

[∆d, J ] = 0,

so J acts on harmonic forms. Moreover, we have

∆d = 2∆∂ = 2∆∂̄ .

This leads to a decomposition of Hn(X) into the direct sum of the spaces of
(p, q)-harmonic forms Hp,q(X),

Hn(X) =
⊕
p+q=n

Hp,q(X),

where Hp,q(X) = Hq,p(X). When we restrict our attention to a compact Kähler
manifold, the isomorphism

Hn(X,C) ' Hn(X)

induces the (Hodge) decomposition

Hn(X,C) =
⊕
p+q=n

Hp,q(X),

where J acts by (i)p(−i)q on each Hp,q(X). Moreover, we get a decreasing
(Hodge) filtration, which is an equivalent data to the decomposition above:

F 0Hn(X,C) = Hn(X,C) ⊇ F 1Hn(X,C) ⊇ · · · ⊇ F pHn(X,C) ⊇ · · · ,
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where
F pHn(X,C) =

⊕
i+j=n
i≥p

Hi,j(X).

Note that the two data are equivalent since, given a filtration F • on Hn(X,C),
we recover the decomposition simply defining

Hp,q = F p ∩ F q.

Definition 2.1. An integral Hodge structure pure of weight k ∈ Z is a finitely
generated free abelian group VZ, with a decomposition of VC = VZ ⊗Z C,

VC =
⊕
p+q=k

V p,q,

such that
V p,q = V q,p.

Equivalently, as discussed above, we can replace the decomposition with a
finite decreasing filtration of VC, F •VC such that

F pVC ∩ F qVC = 0 and F pVC ⊕ F qVC = VC,

whenever p+ q = k + 1. In the case of compact Kähler manifolds,

VZ = Hk(X,Z)/torsion

is a pure Hodge structure of weight k.

Definition 2.2. Given (VZ, V p,q) and (WZ,W
p,q) two pure Z-Hodge structures

of weight k and k + 2r, then a morphism of Hodge structures of bidegree (r, r)
is a group homomorphism φ : VZ →WZ such that

φ(V p,q) ⊆W p+r,q+r, or φ(F pVC) ⊆ F p+rWC.

We restrict our attention to morphisms of bidegree (0, 0) introducing the
Tate twist.

Definition 2.3. Define the Tate-Hodge structure Z(1) to be the pure Hodge
structure of weight -2

(2πiZ, H−1,−1), where H−1,−1 = Z(1)⊗ C.

Moreover, given a pure Hodge structure (V, V p,q) of weight k and an integer
c, define the Tate twist to be the pure Hodge structure (V (−c), V (−c)p,q) of
weight k + 2c, defined by

V (−c) = V and (V (−c))p,q = V p−c,q−c.

We refer to morphism of pure Hodge structures V,W of weight k and k + 2r
as a morphism of Hodge structures of bidegree (0, 0) between V (−r) and W .

The first example of morphism between pure Hodge structure comes again
from Kähler manifolds. Given f : X → Y holomorphic map between compact
Kähler manifolds, we get

f∗ : Hn(Y,Z)→ Hn(X,Z),
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preserving the weight! So f∗ is a morphism of Hodge structure. What about
the Gysin morphism f∗? Note that f∗ does not preserve the weight, since

f∗ : Hn(X,Z)→ Hn+2r(Y,Z), where r = dimC(Y )− dimC(X),

but induces a morphism of Hodge structures betweenHn(X,Z)(−r)→ Hn+2r(Y,Z).
Exercise. Prove that a morphism of Hodge structures φ : VZ →WZ (of bidegree
(0, 0)) is strict for the Hodge filtration, i.e. for all p

imφ ∩ F pWC = φ(F pVC).

3 Mixed Hodge Structures
Hodge theory tells us that the cohomology of a compact Kähler manifold is
a pure Hodge structure. What if we consider an algebraic variety (over C)
in general? The question whether its cohomology should have a pure Hodge
structure has negative answer. Consider a nodal elliptic curve C. It turns
out that H1(C) ' Z〈dy〉, hence it does not admit a complex structure and, in
particular, is not a pure Hodge structure of weight 1. If we resolve the singularity,
we get C̄ with exceptional divisor E such that C = C̄/E and we have a long
exact sequence of relative homology groups

0←− H̃0(E)←− H1(C̄, E)←− H1(C̄)←− H1(E) = 0←− · · · ,

and the relative exact sequence in cohomology

0 −→ H̃0(E) −→ H1(C̄, E) −→ H1(C̄) −→ 0.

Since H1(C) ' H1(C̄, E), we can see H1(C) as the extension of H0(E) and
H1(C̄), which are, respectively, pure Hodge structures of weight 0 and 1. More
precisely, we have an increasing filtration

imH0(E) = W 0 ⊂W 1 = H1(C),

such that the graded piece

GrW
1 := H1(C)/H̃0(E) ' H1(C̄)

is a pure Hodge structure of weight 1.

Definition 3.1. A mixed Hodge structure (HZ,W
•, F •) consists of a free abelian

group HZ together with an increasing filtration of HQ

W 0 ⊆W 1 ⊆W 2 ⊆ · · · ,

and a dicreasing filtration of HC

HC = F 0 ⊃ F 1 ⊃ F 2 ⊃ · · · ,

such that F • defines a pure Hodge structure of weight k on the graded piece

GrW
k HC = W k/W k−1.
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A morphism of mixed Hodge structures is a Z-linear map which is compatible
with the two filtrations of filtered vector spaces.

Proposition 3.2. Any morphism f : (VZ,W, F )→ (V ′Z,W ′, F ′) of mixed Hodge
structures is strict, i.e. every element of F ′p which is in the image of f comes
from F p and similarly the same holds for the weight filtration.

In view of the (singular) case above, we would like to have a (canonical and
functorial) result independent of resolution and compactification, which allows
us to associate a mixed Hodge structure to any algebraic variety over C. Indeed,
we have the following.

Theorem 3.3. Quasi-projective varieties have canonical mixed Hodge structure
on their cohomology.

Moreover, we get that the filtrations are independent of the choice of resol-
ution, and so, by Hironaka’s theorem, the result is extended to any algebraic
variety over C.

4 The open smooth case
Let U be a smooth variety and X ⊇ U a smooth compactification, such that
X − U = D is a (smooth) normal crossing divisor. Consider the long exact
sequence of relative cohomology groups

· · · −→ Hi(X,U) −→ Hi(X) −→ Hi(U) −→ Hi+1(X,U) −→ · · ·

By excision and by Thom isomorphism, we have

Hi(X,U) ' Hi(ND,ND −D) ' Hi−2(D),

where ND is the normal bundle of D in X. Thus, we have that Hi(X,U) can
be seen as a pure Hodge structure but of the wrong weight, since we would like

Hi−2(D) −→ Hi(X)

to be a morphism of pure Hodge structures (of bidegree (0, 0)) but they have
weights i− 2 and i. Thus, we take the Tate twist so that our long exact sequence
looks like

· · · −→ Hi−2(D)(−1) −→ Hi(X) −→ Hi(U) −→ Hi−1(D)(−1) −→ · · · .

Hi(U) admits a mixed Hodge structure with induced weight filtration

W k(Hi(U)) =


0 k < i

im(Hi(X)→ Hi(U)) i = k

Hi(U) k ≥ i+ 1.

Where does the decreasing filtration arise? In the classical case, i.e. for a complex
manifold X, we consider the complex of sheaves on X of holomorphic •-forms
Ω•X and its naive filtration

F pΩ•X := Ω≥pX = 0→ · · · 0→ ΩpX → Ωp+1
X → · · · .
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It is easy to check that induces a decreasing filtration on the hypercohomology
of Ω•X , which is defined as

F pHn(X,Ω•X) := im(Hn(X,F pΩ•X)→ Hn(X,Ω•X)).

Since Ω•X is a resolution of the locally constant sheaf of stalk C over X, we have

Hn(X,Ω•X) ' Hn(X,C),

which induces a decreasing filtration on Hn(X,C). In the case of compact Kähler
manifolds, this is what we are looking for and, indeed, the filtration leads us to
the proof of (a weaker version of) the Hodge decomposition. Unfortunately, if we
try to use the same construction for U , in general we get no extra information.
For instance, for U affine,we would get

FnHn(U,C) = Hn(U,C).

We need to replace our complex of sheaves Ω•X with something clever. It turns
out that if we allow logarithmic singularities along D, we are able to induce a
(non-trivial) decreasing filtration on Hi(U,C) from the naive one on the new
complex. More precisely, let Ω•X(logD) be the subcomplex of j∗Ω•U , where
j : U ↪→ X is the inclusion of U in its compactification such that

• a meromorphic differential k-form α on an open V ⊂ X, holomorphic on
V ∩ U is an element of Ωk

X(logD)|V if α and dα admit poles of order at
most 1 in V ∩D.

We can give an explicit local description of the elements of Ωk
X(logD): Let

z1, . . . , zn be local coordinates on an open set V of X, in which V ∩D is defined
by the equation

z1 · · · zr = 0, for r ≤ n.
Then, the elements of the form

dzi1
zi1
∧ dzi2
zi2
∧ · · · dzil

zil
∧ dzj1 ∧ · · · dzjm

,

for l +m = k, i• ≤ r, j• > r, form a basis of ΩkX(logD)|V .
Theorem 4.1.

Hk(U,C) = Hk(X,Ω•X(logD)).
Hence, we can consider the filtration F pHk(U,C) induced by the naive

F pΩ•X(logD) := Ω≥pX (logD).

Such a filtration induces a pure Hodge structure of weight i on

GrW
i Hk(U) =


0 i < k

im(Hk(X)→ Hk(U)) ' Hk(X)/Hk(X,U) i = k

ker(Hk+1(X,U)→ Hk(X)) ' Hk(U)/Hk(X) i = k + 1
0 i > k + 1.

Remark 4.2. In the case of X singular, we take a smooth resolution X̂ with
exceptional set E = ∪Ei, where Ei are simple normal crossing divisors. We
iterate the procedure briefly explained in the previous section in a similar manner.
Moreover, if f : X̄ → X is proper and surjective, then

W k−1Hk(X) = ker f∗.
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5 Applications
Let X → C be a surjective projective map, with X a complex smooth projective
variety and C curve, and denote C−{critical values} by C∗. Then, Hk(Xt)π1(C∗)

contains the image of

Hk(X − (critical fibers))→ Hk(Xt),

where Xt is a smooth fiber. What can we say about the converse? One of the
amazing applications of the theory of mixed Hodge structures leads to a proof
that any invariant cycle lifts to Hk(X). Indeed, in Thèorie de Hodge II, Deligne
proved the following result.

Theorem 5.1 (Deligne’s global invariant cycles theorem). The subspace of
monodromy invariants is

Hk(Xt)π1(C∗) = im(Hk(X)→ Hk(Xt)).

Two of the main ingredients of the proof are the degeneration on the first
page of the Leray spectral sequence for f and the properties of the mixed Hodge
structures (in particular, strictness of maps between them). This is a clear
example where the existence of this rich structure on the cohomology of X allows
us to prove something of topological nature.
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