
Moduli Spaces and Stable Bundles

1 Introduction

A moduli space, loosely speaking, is a ‘parameter’ space: a space parametrizing certain objects
on X, so that the points of the moduli space M correspond to objects on X. However, we need
to know about than just the points of M , as the following example illustrates.

Example 1.1. Consider the moduli space of points of C2 satisfying y = x2 and y = 0, that
is, Z(x2, y) ⊂ C2. As a set, this is clearly just the origin. However, the ring of functions is
C[x, y]/(y−x2, y) ≅ C[x]/(x2), and as a scheme this is Spec C[x]/(x2). The scheme is the object
which is going to give us information on the non-reduced structure, not the set of closed points.

We will want a moduli space to take into account deformations. I define this below, but
in this example, if we take Z(y − x2, y − t), for some t, then we will have two closed points
(x−

√
t, t), (x+

√
t, t), which will be distinct if t ≠ 0. We want to be able to see that setting t = 0

still gives us more than just a point - it should give us a thickened point, or double point. So we
need to consider schemes.

2 Brief aside on schemes

Let us briefly review some definitions.

Definition 2.1. A presheaf OX of sets (rings/modules) on a topological space X is a set
(ring/module) OX(U) for every open set U ⊂X , together with the following data:

1. For every inclusion of open sets V ⊂ U in X we have a restriction map ρUV ∶ OX(U) →
OX(V ) which is a map of sets (rings/modules).

2. For open sets W ⊂ V ⊂ U in X, ρVW ○ ρUV = ρUW .

3. For all open sets U ⊂X, the restriction map ρUU is the identity.

A presheaf is a sheaf if we have an additional two axioms:

1. Identity axiom: If U ⊂ X is an open set, f, g ∈ OX(U), and {Vi ∶ i ∈ I} is an open covering
of U , such that for all i ∈ I,

ρUVi(f) = ρUVi(g),
then f = g.

2. Gluability axiom: If U is an open set in X, and {Vi ∶ i ∈ I} is an open covering of U , and
for every Vi we have fi ∈ OX(Vi) such that for all i, j ∈ I,

ρViVi∩Vj(fi) = ρVjVi∩Vj(fj),

then there exists an f ∈ OX(U) such that ρUVi(f) = fi for all i ∈ I.
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A morphism of sheaves φ ∶ F → G is a morphism φ(U) ∶ F(U)→ G(U) for every open set U ⊂X,
such that for every inclusion of open sets V ⊂ U in X the following diagram commutes:

F(U) G(U)

F(V ) G(V ).

φ(U)

ρFUV ρGUV

φ(V )

For x ∈ X, the stalk at x is the set of equivalence classes {[(f,U)] ∶ f ∈ OX(U), x ∈ U}
under the equivalence relation (f,U) ∼ (g, V ) if there exists an open x ∈ W ⊂ U ∩ V such that
ρUW (f) = ρVW (g). We denote the germ [(f,U)] as fx.

Presheaves can be made into sheaves by sheafification. This can be expressed by a universal
property, and hence is unique up to unique isomorphism.

Let π ∶ X → Y be a continuous map of topological spaces, and OX a sheaf on X. The direct
image π∗(OX) of OX is the presheaf on Y given by, for V ⊂ Y open, π∗OX(V ) = OX(π−1(V )).
This is in fact a sheaf. There is also a pullback of a sheaf, π∗OY .

Definition 2.2. A ringed space is a topological space X together with a sheaf of rings OX on
X. A morphism of ringed spaces (π,π#) ∶ (X,OX)→ (Y,OY ) is a continuous map of topological
spaces π ∶ X → Y , and a morphism of sheaves on Y , π# ∶ OY → π∗OX . Equivalently, we could
define π# to be a morphism of sheaves on X, π∗(OY ) → OX . A locally ringed space is a ringed
space such that ring of germs at each point is local. A morphism of locally ringed spaces is a
morphism of ringed spaces, with the additional requirement that it takes the maximal ideal of
the germ in X to the maximal ideal of the germ in Y for every x ∈X. Morphisms of locally ringed
spaces induce maps of stalks. That is, if x ∈ X,y = π(x), there is induced morphism of rings
OY,y → OX,x, [(f,U)] ↦ [(π#(U)(f), π−1(U))] where π#(U)(f) ∈ π∗OX(U) = OX(π−1(U)) as
needed.

A commutative ring with unity can be made into a locally ringed space using the Spec functor.
Let R be a ring. As a topological space, let SpecR = {p ∶ p is a prime ideal of R}. Define maps

Z(−) ∶ {ideals in R}Ð→ { sets in SpecR}, Z(S) = {p ∈ SpecR∣S ⊂ p},

I(−) ∶ {sets in SpecR}Ð→ {ideals in R}, I(K) = {f ∈ R∣f ∈ p for all p ∈K}.
The Zariski topology on SpecR is defined by saying Z(S) is closed for every S ⊂ R. The following
lemma lists some well-known facts about these maps.

Lemma 2.3. Let R be a ring, J ⊂ R an ideal in R, and K ⊂ SpecR a closed set.

1. J ⊂ I(Z(J)).

2. K = Z(I(K)).

3. I(Z(J)) =
√
J , where

√
J = {f ∣ there exists n ∈ N such that fn ∈ J}.

The topology on SpecR has as an open basis D(f) = {p ∈ SpecR∣f /∈ p} for all f ∈ R. We
think of elements in R as functions on SpecR, where the value of f at p is the projection of f in
R/p. However, because of nilpotents (which are precisely elements in ⋂p∈SpecR p), functions may
not be determined by their values at points. In the particular case of the ring R =K[X1, . . . ,Xn],
where K is an algebraically closed field, functions (elements in R) are determined by their values
on the spectrum, and moreover, they are determined by their value at the maximal ideals of R,
which are in one to one correspondence with elements in Kn.
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The ringed space SpecR = (X,OR) is X = SpecR as a topological space, together with the
sheaf on the base of distinguished open set (sets of the form D(f), f ∈ R), where OR(D(f))
is the localization of R at the set of all elements g ∈ R ∶ D(f) ⊂ D(g). This in fact defines a
sheaf on a base. An affine scheme is a ringed space which is isomorphic to (SpecR,OR) for
some ring R. A scheme is a ringed space (X,OX) which can be covered by open sets such that
(U,OX ∣U) is an affine scheme. If φ ∶ R → S is a morphism of commutative rings, then it induces
a morphisms of affine sheaves SpecS → SpecR. We want morphisms of schemes to locally look
like the morphisms that arise in this way. One can define morphisms of schemes like this, but
equivalently, morphisms of locally ringed spaces coincide with them, which gives an alternative
definition.

3 Back to Moduli Spaces

One begins by finding as many discrete invariants as possible, and then considering the moduli
problem for fixed invariants: for example, nonsingular projective curves of a fixed genus. More-
over, we want the moduli space to be natural, in that the geometric structure of the moduli
space should reflect the geometry of the problem.

Moduli spaces are the solution to a moduli problem. To pose a moduli problem you need the
following ingredients:

• The set of objects A you want to classify, perhaps up to an equivalence (for example,
isomorphism).

• A definition of a family of these objects with a base space S, which satisfies

– If S = {s}, then a family over S is just an object in A.

– Families pull back. In other words, if φ ∶ S1 → S2 is a morphism, and X is a family
over S2, then we need a family over S2, which we denote φ∗(X). Pulling back must
be functorial, and respect equivalence.

Notice that this means if X is a family over S, and s ∈ S, then the pullback of X over the
inclusion {s} ∈ S is an object in A, which we denote Xs.

Example 3.1. Right notions of families:

• If we want to consider vector bundles over X, the correct notion of a family over a base S,
where S is a scheme, is a bundle E on X ×k S such that the pullback bundle Xs ∶= E∣X×{s}
is stable over X for all s ∈ S. A deformation of a vector bundle E over X is a family of
vector bundles over X with base S such that the fibre Xs0 is E for some s0 ∈ S.

• To generalize the above, for sheaves over X, a family is a sheaf F on X × S which is flat
over S - it sort of varies smoothly over S. Flatness implies that the Hilbert polynomial is
constant over the fibres Xs, s ∈ S (the fibres over each s have the same topology), for X
reduced.

• A family of complex projective varieties over a base S, also a complex variety, is a proper
surjective morphism π ∶ T → S such that π is flat with reduced fibres, and has maximal
rank. A deformation of a complex projective variety M is a family π ∶ T → S together with
an isomorphism π−1(s0) ≅M for some s0 ∈ S.

• For the moduli problem of subschemes of X, a family is a subscheme of X × S, which is
flat over S.
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As mentioned, we need to know more about M than just the points - we need the whole
scheme structure. The notion of a family is what allows us to put an algebraic structure on the
moduli space. This is because it gives rise to a natural functor Schemes → Sets,

S ↦ {families with base S},

called the moduli functor.

Exercise 3.2. LetM be a scheme, and consider the ”functor of points” ofM, Schemes → Sets,
that takes S ↦ Hom(S,M). Show that M is determined by its functor of points.

Remark 3.3. If M, S are schemes, then the S-valued points of M is the set M(S). If M =
Spec(k[x1, . . . , xn]/(f1, . . . , fr) for a field k, and S = Spec(R) for a k-algebra R, then the S-
valued points of M correspond to ring morphisms k[x1, . . . , xn] → R whose kernel contains
(f1, . . . , fr). That is, it is a choice xi ↦ ri such that f1(r1, . . . , rn) = ⋯ = fr(r1, . . . , rn) = 0. So S
points of M are just solutions to f1 = ⋯ = fr = 0 in R.

Applying the functor of points of a scheme M to just a point {s} tells us just about the
points of M.

There is also a relative version of the functor of points. If M is a scheme over S (that is,
M and S are schemes and we have a morphism M → S; morphisms between two schemes over
S must make the usual diagram commute), then MS(T ) = HomS(T,M) ⊂M(T ). If it is clear,
you can suppress the S. Another thing that will come up is the notion of a subfunctor. Let A be
a category, then F ∶ A→ Set is a subfunctor of G ∶ A→ Set if for all objects B ∈ A, F (B) ⊂ F (A),
and if f ∶ B1 → B2, then F (f) is the restriction of G(f) from G(Bi) to F (Bi).

Definition 3.4. Suppose we are given a moduli problem. A (fine) moduli space is a scheme
M such that M is the functor given by the moduli problem. That is, M represents S ↦
{families with base S}: Mor(S,M) ≅ {families with base S}.

There is a unique family U with base M corresponding to the identity map 1M ∈ Mor(M,M),
and this is called the universal family, because if F is a family over base X, then there is a unique
morphism φ ∶ S →M corresponding to F in Mor(S,M), and φ∗(U) ≅ F .

The above definition shows that the notion of family over a base S, where S is more than
just a point, is what gives us the non-reduced information about M, because it corresponds to
considering M for more that just points.

Consider vector bundles over X. Then a moduli space M has points vector bundles over X.
The universal bundle U on M ×X should have fibre E over {E} ×X.

Mor(S,M)↔ {bundles on X × S}

f ∶ S →M↦ (f × Id)∗(U)
{s ∈ S ↦ E∣X×{s}}↤ E.

Universal families, or fine moduli spaces, rarely exist. Thus, there is a weaker notion of a
coarse moduli space, where instead of a natural isomorphism from the moduli functor to M,
there is just a natural transformation between them, which is universal among such natural
transformations.

Exercise 3.5. Show that C∗ automorphisms of stable bundles mean the moduli functor is not
representable (for example, do this for line bundles on a curve of genus g).

This exercise is related to the jump phenomenon, when, given a family F over a connected
base S for some moduli problem, and s0 ∈ S, for all s, t ∈ S, s, t ≠ s0, Fs = Ft, but Fs0 ≠ Fs.
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Exercise 3.6. Show that there exists a family of vector bundles on CPn with base C, where for
s ≠ 0, Xs ≅ O ⊕O, and X0 ≅ O(1)⊕O(−1).

Jump phenomena prevent any moduli space from being Hausdorff. Similarly to in GIT, one
solution to this is to throw away the ’bad’ spaces. In fact, the solution to a moduli problem often
comes down to forming an orbit space.

4 Moduli Space of Bundles

Let (X,OX(1)) be a projective variety (so that OX(1) is an ample line bundle). Let ξ be
a coherent sheaf on X. Define ξ(m) = ξ ⊗ OX(m). The Hilbert function of ξ is Pξ(m) =
dimH0(X,ξ(m)) = dimΓ(X,ξ(m)) (this depends on the line bundle we have fixed). Alterna-
tively, define this as Pξ(m) = χ(ξ(m)). The idea is that for a sufficiently large m, all non-zero
cohomology of ξ(m) will vanish (because OX(1) is ample). Define the Hilbert polynomial to be
a polynomial in m which agrees with Pξ(m) for m >> 0 (this exists). Thanks to Riemann-Roch,
the Hilbert polynomial depends only on the Chern classes of ξ and of OX(1).

If ξ = E is a vector bundle, then in fact,

PE(m) = a0mr + a1mr−1 +⋯,

where a0 = rankE ∫X
ωn

n!
, a1 = ∫X(c1(E)+rankE c1(X)

2
). ωn−1

(n−1)! . We can consider the monic version

of this polynomial.
Fix a coherent sheaf F on (X,OX(1)). A quotient of F is an exact sequence

F → Q→ 0.

A family of quotients with base S is a quotient of π∗F , where π ∶ X × S → X is the projection,
which is flat over S and Q∣X×{s} has the same Hilbert polynomial P , for all s ∈ S.

We put an equivalence relation on quotients by identifying quotients with the same kernel.

Exercise 4.1. Check that when S = {s} this is just a quotient.

The Quot functor takes a scheme S to the set of all families of quotients Q of F with base
S. We can also fix a polynomial P and restrict to quotients with that Hilbert polynomial.

Example 4.2. If F = O, then a quotient is just the structure sheaf of some closed subscheme
Z ⊂X, by considering the support of Q.

To see this, take an affine open set U : OX(U) ≅ Spec(A). A quotient is a surjective map
A → Q(U), so Q(U) ≅ A/I, for some ideal I. Then Z ∩ U = SpecA/I = Z(I) ⊂ X. Let I be
the ideal sheaf of Z, i.e., on an open set U , I(U) = ker(F(U) → Q). So in this case, the Quot
functor takes a scheme S to the set of all families of subschemes of X with base S. This is called
the Hilbert functor. If it is representable, it is called the Hilbert scheme.

If we consider Example 1.1, the Hilbert scheme is Spec C[t]/(t2).

Exercise 4.3. Set the Hilbert polynomial to be P (n) ≡ 1. Show that Quot(OX , P ) ≅ X (as a
scheme/functor of points - not just as a set).

Example 4.4. To show that the Quot functor is representable, we will need the Grassmannian
functor. Let k be a field, and V a finite dimensional vector space over k. Let r be an integer
such that 0 ≤ r ≤ dim(V ). Then Grass(V, r) is a functor from the opposite category of Sch/k to
Sets, such that

Grass(V, r)(X) = {quotients OX ⊗k V → F → 0 that are locally free and of constant rank r}.
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I will sketch how to show that this functor is representable. First, fix a W ⊂ V of dimension
r. Consider the subset of Grass(V, r) such that the restriction of OX ⊗k V → F to OX ⊗W gives
an isomorphism OX ⊗W → F . Let GW be the subfunctor defined by these subsets.

GW is representable. To see this, note that there is an isomorphism OX ⊗W ← F . Then
we get a composition OX ⊗k V → F → OX ⊗k W , which is the right inverse of the inclusion
OX ⊗k W → OX ⊗k V. So GW corresponds to morphisms V → W which splits the inclusion. If
K ⊂W such that V =K⊕W , then GW corresponds to morphisms K →W . So GW is the functor
Hom(K,W ), defined by

Hom(K,W )(X) = Hom(OX ⊗k K,OX ⊗kW ).

GW = Hom(K,W ) is representable by GW = Spec(Sym(Hom(K,W )∗)). To see this, recall
that the universal property of the symmetric algebra is the following: given a k-vector space V
and a k-module B, then there is a natural isomorphism Homk−v.s.(V,B) = Homk−alg(SymV,B).
Thus,

Homsch/k(X,Spec(Sym(Hom(K,W )∗))) ≅ Homk−alg(Sym(Hom(K,W )∗)),OX(X))

≅ Homk−v.s.(Hom(K,W )∗,OX(X)) ≅ OX(X)⊗Hom(K,W ).
The idea now is to show that the GW are open (we know that they are affine) subfunctors,

that agree on intersections, and so they can be glued together to get Grass(V, r). Fix X and
W , and consider a quotient φ ∶ OX ⊗k V → F . Consider open subschemes Y of X such that
the restriction of φ to Y lies in the image of GW (Y ), and choose a maximal such Y , call it YW .
Then this is the definition of GW being an open sub-functor. As W varies, the YW form an open
covering of X, so the GW are an affine open covering of G. After checking the cocycle condition,
we can see that we can glue the GW together, and this scheme represents G.

Finally, you can use the Plucker embedding to show that Grass(V, r) is projective (and indeed
a smooth irreducible variety).

Theorem 4.5. Let F be a coherent sheaf over a projective variety (X,O(1)). Then Quot(F , P )
is representable.

Outline: First, let’s fix a quotient 0 → K → F → Q → 0. As O(1) is ample, there is an m >> 0
such that for all i > 0, Hi(K(m)) = 0. Moreover, for m sufficiently large, K(m) is globally
generated. This means that there is an exact sequence

H0(K(m))⊗C OX → K(m)→ 0.

Sections of K(m) generate K(m) inside F(m), and taking the quotient defines Q(m). So the
quotient is determined by the exact sequence of vector spaces

0→H0(K(m))→H0(F(m))→H0(Q(m))→ 0.

But this exact sequence is a point of Gr(H0(F(m)), P (m)) (recall that by definition P (m) =
dim H0(F(m)). We assume that you can choose m universally.

We then need to generalize and do the above over a base S, in order to get a subfunctor
of the Grassmannian. The Grassmannian is representable, so this gives a subscheme of the
Grassmannian, called Quot. For the details of the proof, see Huybrechts-Lehn.

Now we can give the outline of Simpson’s construction of the moduli space of vector bundles
over (X,O(1)) with given Hilbert polynomial P .
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1. Fix a bundle ξ on X with Hilbert polynomial P .

2. Find N > 0 such that all higher cohomology of ξ(N) vanishes, and ξ(N) is generated by
its global sections. Again, this means that

H0(ξ(N))⊗O(−N)→ ξ → 0.

3. Fix an identification H0(ξ(N)) ≅ CP (N).

4. Under this identification, ξ is a a quotient sheaf ofO(−N)⊕P (N), so ξ ∈ Quot(O(−N)⊕P (N), P ).

5. Divide by the choice of identification in 3). That is, divide by the action of SL(P (N)).

6. Find a stability condition to do GIT for this quotient, and let Quot’ denote the semi-stable
points.

7. Go back to step 2, and show that N can be chosen universally for all bundles satisfying
the stability condition.

8. Check that Quot’//SL(N) is a moduli space of stable bundles/sheaves.

In step 4, we identified ξ as an element of Quot(H0(ξ(N)) ⊗H0(O(−N)), P ), divided by the
action.

In a previous exercise, we showed that the stability condition for a subspace A ⊂ V ⊗W ,
under the SL(V ) action on Gr(V ⊗W,r) was for all proper subspaces S ⊂ V ,

dimA ∩ (S ⊗W )
dimS

< dimA

dimV
.

So as an element of Quot(H0(ξ(N))⊗H0(O(−N)), P, ξ is stable by checking proper subspaces
S of H0(ξ(N)). By unwinding ξ(N) and evaluating sections, S gives rise to a subsheaf of ξ. ξ
is stable if and only if for all proper subsheaves F ⊂ ξ, and n >> 0,

PF(n)
rankF < Pξ(n)

rankξ
.

This is called Gieseker stability. If we consider the leading coefficient as n → ∞, then we get
slope stability,

∫X c1(F)ωn−1

rankF < ∫X
c1(ξ)ωn−1

rankξ
.

Slope stability implies Gieseker stability, and on a curve, these are equivalent.
Stability is a generic condition.

Exercise 4.6. Show that both Gieseker stability and slope stability (u(E) is the slope of E)
satisfy the see-saw property. That is, for all exact sequences

0→ A→ ξ → B → 0,

such that A ≠ 0, u(A) < u(E)⇔ u(ξ) < u(B)⇔ u(A) < u(B), and similarly when we consider
Gieseker stability instead of slope stability.

Exercise 4.7. Show that a stable vector bundle is simple.

Stability rules out the possibility of the ’jump phenomenon’.
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Lemma 4.8. If ξ,F are families of stable sheaves parametrized by C, and for all t ∈ C∗, ξt ≅ Ft,
then ξ0 ≅ F0.

Proof. By definition, ξ,F are sheaves on X × C, flat over C with the same Hilbert polynomial
on each fibre, and stable on each fibre.

Let π ∶X×C→ C be the projection. Hom(ξ,F) is a sheaf onX×C (defined byHom(ξ,F)(U) =
Hom(ξ∣U ,F ∣U)), so we can construct the direct image sheaf under π, π∗Hom(ξ,F). By definition,
for an open U ⊂ C, π∗Hom(ξ,F)(U) = Hom(ξ∣X×U ,F ∣X×U). The fiber over t ∈ C is Hom(ξt,Ft),
as these are coherent sheaves.

Because ξt,Ft are simple by the previous exercise, the fiber over t ∈ C−{0} is Hom(ξt,Ft) ≅ C.

Exercise 4.9. Show that π∗Hom(ξ,F) is torsion free over C. Recall that a sheaf G over a
scheme (X,OX) is torsion-free if for all p ∈X, Gp is a torsion-free OX,p- module.

If ξ,F are families of vector bundles, then π∗Hom(ξ,F) is a vector bundle, so as it is a line
bundle over C − {0}, it is a line bundle over C. For sheaves, we need the previous exercise to
show that it is a a line bundle over C.

Pick a nonzero element of the fiber over 0. By definition, this is a non-zero morphism
φ ∶ ξ0 → F0. So we can form two exact sequences:

0→ kerφ→ ξ0 → imφ→ 0,

0→ imφ→ F0 → cokerφ→ 0.

Using the see-saw property of µ and the stability of ξ0,F0, if imφ ≠ F0, we have that µ(imφ) >
µ(ξ0), and µ(im(φ)) < µ(F0). By definition of µ, it depends on the Hilbert polynomial of a
sheaf, and so because ξ and F are families of fixed Hilbert polynomials, µ(F0) = µ(ξ0). So we
have a contradiction, unless imφ = F0 and ker(φ) = 0. So φ is an isomorphism.
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