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1. Introduction—Intersections

Recommended reading: Bott and Tu, the first fifty pages or so.

1.1. The flat model. Two (affine) subspaces in Rn of complementary dimension k and
n− k. If in ‘general position’ they will meet in a point. If this is not the case (for example
line contained in or parallel to a plane in R3) then a generic perturbations (of the coefficients
defining the subspaces) will cause them to meet in a point.

1.2. Transverse intersection. Let M be a smooth manifold. Let Y and Z be submani-
folds. Suppose that p ∈ Y ∩ Z. We say that Y and Z intersect transversally at p if

TpM = TpY + TpZ

i.e. the two tangent bundles of Y and Z at p together span TpM . Examples in 3 dimensions.
Further, Y and Z intersect transversally if they intersect transversally at every point p in

Y ∩Z. If Y and Z intersect transversally, their intersection is smooth and the codimension
of Y ∩ Z is the sum of the codimensions of Y and Z. In particular, if the Y and Z are of
complementary dimension, then their transverse intersection is a set of points and if M is
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compact (or more generally, at least one of Y and Z is compact) then this is a finite set of
points.

Now suppose that M is orientable and fix an orientation. If now Y and Z are oriented
closed submanifolds then we define

Y · Z =
∑

p∈Y ∩Z
±1

where we take the + sign if the orientation of TpY ⊕ TpZ agrees with the orientation of
TpM and the − sign otherwise.

With these signs, this turns out to be a topological invariant: the intersection pairing of
Y and Z depends only upon the homology classes defined by the submanifolds Y and Z.

Remark 1.1. Without orientations, one can always define the mod-2 intersection number
of homology classes.

A first statement of PD is that, extended to homology, the intersection product

Hk(M,Z)⊗Hn−k(M,Z) −→ Z, (Y, Z) 7→ Y · Z (1.1)

is perfect: every Z-linear map Hn−k(M,Z)→ Z arises from intersection pairing with some
Y ∈ Hk(M,Z) and on the other hand Z 7→ Y · Z vanishes identically on Hn−k iff Y is in
the torsion part of Hk.

As a first consequence, defining bk(M) to be the rank of the free part of Hk(M,Z),
equivalently the dimension of the real vector space Hk(M,R), we have bk = bn−k for any
orientable compact n-manifold without boundary.

Further consequences:
Suppose that compact orientable M has even dimension n = 2m. On the middle-

dimensional homologyHm(M,R) the intersection form is a bilinear form which is symmetric
if m is even and skew if m is odd. Since the pairing is non-degenerate, Hm(M) must be
a symplectic vector space and hence even-dimensional if m is odd. If m is even (so n
is divisible by 4) then we have a quadratic form on Hm(M,R) which turns out to be
an important topological invariant of our manifold M . In particular it has a signature
(number of positive eigenvalues minus number of negative eigenvalues), which is a more
refined invariant than just the number bm(M).

In dimension 4, there is a classification (Hasse–Minkowski) of the quadratic forms over
the integers that can occur. There are two families:

Odd forms diag(±1, . . . ,±1)
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Even forms rE8 + sH, where H =

[
0 1
1 0

]
and

E8 =



2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2


It is still an open question which of the even forms occur as intersection forms of smooth

4-manifolds. (It is known that all occur as intersection-forms of compact oriented simply
connected topological 4-manifolds.) Cf. breakthrough work of Freedman and Donaldson
(seperately) in the early 1980s.

Remark 1.2. Self-intersections: If Y is an oriented m-dimensional submanifold of M2m,
and we want to compute Y · Y , then we have to work a bit, because Y certainly does not
intersect itself transversely!

This number is computed by taking a transverse perturbation (somehow) Y ′ of Y in its
homology class, then counting intersection points (with sign).

2. de Rham comohology

2.1. Definitions. De Rham complex, d wedge product. Compact supports, two cohomol-
ogy theories. Functorial properties. Extension by zero for compact supports.

2.2. Poincaré Lemmas. These state that:

H∗(Rn) = R in degree 0, and vanishes otherwise

for ‘ordinary’ cohomology and

H∗c (Rn) = R in degree n, and vanishes otherwise.

Write down representatives.
Proofs Induction on the dimension. Can be done by hand if n = 1. Suppose known for
n, and try to prove for n + 1. For convenience write xn+1 = y. If ω is of positive degree,
write

ω = α+ dy ∧ β (2.1)

where α and β are forms with no dy term. This decomposition is unique, so in particular
ω = 0 iff α = 0 and β = 0. Write d′ for differentiation in the n x variables, so

d = d′ + dy
∂

∂y
. (2.2)

Then we have

dω = d′α+ dy ∧ (∂yα− d′β) (2.3)
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and there is no dy in d′α or in ∂yα− d′β. By the above remark,

dω = 0⇔ d′α = 0 and ∂yα− d′β = 0.

coefficients of the forms will (generally) be functions of y.
To show that ω is exact, consider a form u with no dy term (but whose coefficients may

depend on y). Then the equation

du = ω ⇔ ∂yu = β, d′u = α.

Define u so as to satisfy the first equation ∂yu = β. This can be done simply by integrating
from the origin, say. Then

ω − du = α− d′u

and there is no dy on the RHS. The RHS is d-closed, and this implies (because no dy)
that the coefficients of the RHS are independent of y, so that the RHS is a form of positive
degree in the n variables (x1, . . . , xn). By induction, this is exact, and it follows that ω is
exact on Rn.
Poincaré Lemma for compact supports.

We shall use induction again, let us do n = 1 in a bit more detail.
For n = 1, H0

c (R) = 0 because a constant function with compact support must be 0. If
ω = f(x) dx is a compactly supported 1-form, consider

u(x) =

∫ x

−∞
f(t) dt.

Then du = ω, but u only has compact support if∫ ∞
−∞

f(t) dt = 0.

Thus integration gives a map

I : Ω1
c(R)→ R,

clearly surjective and ker(I) = dΩ0
c(R). This shows H1

c (R) = R.
An interesting slant on the preceding proof is obtained by making it a bit more formal.

For p ∈ R, define

L : Ωk(Rn+1)→ Ωk−1(Rn+1), Lω =

∫ y

p
β(x, t) dt, (2.4)

Lemma 2.1. Let L be above and let j : Rn → Rn+1 be the inclusion

x 7→ (x, p).

We have the homotopy identity:

dL+ Ld = Id−j∗ (2.5)

Proof. Exercise using the definitions of d and the fundamental theorem of calculus. �
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It follows directly that Hk(Rn+1) = Hk(Rn) for any n.
For compact supports, take p = −∞. Then

L : Ωk
c (Rn+1)→ Ωk−1

prop(Rn+1) (2.6)

where the subscript means proper support with respect to the projection onto the first n
variables (support contained in some K ×R, where K ⊂ Rn is compact). In place of (2.5)
we now have

dL+ Ld = Id (2.7)

which might make the cohomology look completely trivial, but this is not the case because
Lω does not in general have compact support. To mend this problem, define a map

I : Ωk
c (Rn+1)→ Ωk

c (Rn) (2.8)

by integrating out the last variable

I[ω] = I[α+ dy ∧ β] =

∫ ∞
−∞

β(x, t) dt (2.9)

This is a (signed) cochain map:

Lemma 2.2. We have
dI = Id. (2.10)

Proof. Exercise, an easier one than the proof of the previous Lemma! �

Note that Iω = 0 iff Lω has compact support—cf. the 1-dimensional case.
Observe (note the similarity to what we did in one dimension) that

Iω = 0⇔ Lω ∈ Ωk−1
c (Rn+1) (2.11)

To exploit all this there is one more ingredient: pick a 1-form ρ on R with compact support
and total integral equal to 1. Let

K : Ωk−1
c (Rn)→ Ωk

c (Rn+1) (2.12)

be defined by wedge-product with ρ

Kη = ρ ∧ η. (2.13)

(More precisely ρ here is the pull-back of our form by projection onto the last variable
(x, y) 7→ y. This is an abuse of notation.)

Lemma 2.3. We have
dK +Kd = 0, IKη = η. (2.14)

Thus K is a right-inverse to I but it is not a left-inverse. However there is a homotopy
formula

Id−KI = dL′ + L′d, where L′ = L(1−KI). (2.15)

This follows by applying the chain homotopy formula to (1 − KI)ω and commuting d
through K and I. At the level of cohomology, then K and I are inverses, and it follows
that

I : Hk
c (Rn+1) −→ Hk−1

c (Rn) (2.16)
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is invertible. Induction now gives the compactly supported Poincaré Lemma.

2.3. Stokes Theorem: the duality between homology and cohomology. If Y is an
oriented k-submanifold of M , then we have a linear map

Ωk
c (M)→ R, α 7−→

∫
Y
α. (2.17)

This descends to Hk
c (M) because Stokes Theorem says that∫

Y
dη = 0 for all η ∈ Ωk−1

c (M). (2.18)

If Y is a compact oriented k-submanifold, then we get a linear map Hk(M) → R by the
same token. The point is that at least one of Y and α should have compact support in M .
Most of the time we are interested in compact manifolds anyway, in which case compact
support is automatic.

The definition extends to k-cycles. These usally have compactness built in, so are formal
linear combinations of smoothly embedded k-simplices in M . The value

∫
Y α only depends

on the homology class of Y , for if Y = ∂Z, then the other part of Stokes gives∫
Y
α =

∫
∂Z
α =

∫
Z

dα = 0.

Theorem 2.4. de Rham cohomology is dual to (smooth) singular homology (with real
coefficients) in the sense that the integration pairing

Hk(M,R)⊗Hk(M,R), (Y, α) 7→
∫
Y
α (2.19)

is perfect.

This is not Poincaré duality! In the sense that this is always true, even if M is not a
manifold, in which case Hk(M,R) is defined in terms of singular cochains (linear functions
on chains).

2.4. Finite-dimensionality. Mayer–Vietoris as a tool for computation. Good covers.
H∗(M) is finite-dimensional if M admits a finite good cover (always the case if M is
compact). This can be proved by induction on cardinality of good cover using the Poincaré
Lemmas and the Mayer–Vietoris sequences.

2.5. Poincaré Duality in de Rham theory. As before, let M be a compact oriented
n-manifold. Then we have a map (cup product)

α ∪ β =

∫
M
α ∧ β (2.20)

at the level of forms which descends to a bilinear pairing in cohomology

Hk(M,R)⊗Hn−k(M,R)→ R. (2.21)

PD states that this is a non-degenerate pairing, identifying each space with the dual of the
other. There are various generalizations, for example if M is non-compact but admits a
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finite good cover, then the cohomology groups are still finite-dimensional, the cup product
is defined as a pairing

Hk(M,R)⊗Hn−k
c (M,R)→ R (2.22)

and is non-degenerate.

2.6. Sketch Proof. In the last exercise of the sheet you are invited to try to complete the
details of the following sketch. Let M be a smooth oriented manifold with a finite good
cover. (If M is compact, such covers always exist.)

Theorem 2.5. Let M be as above. Then wedge product descends to define a perfect pairing
Hk

c (M)⊗Hn−k(M)→ R.

Use induction on the cardinality, N , of the cover. If N = 1, the statement is just the
Poincaré Lemma. Suppose it is known for all manifolds with a cover of cardinality N , and
suppose that M has a good cover of cardinality N + 1. Write M = U ∪ V , where

U = U1 ∪ · · · ∪ UN , V = UN+1.

Write down the Mayer–Vietoris sequences for H∗ and H∗ for M = U ∪ V . Beware: the
maps for the two theories go in opposite directions. This is because if U is an open subset
of M , then the inclusion induces a map Ωk

c (U)→ Ωk
c (M) given by ‘extension by zero’.

This yields a diagram of the following kind in which the rows are exact. (Check you

Hk−1(U ∩ V ) Hk(M) Hk(U)⊕Hk(V ) Hk(U ∩ V )

Hn−k+1
c (U ∩ V )∗ Hn−k

c (M)∗ Hn−k
c (U)∗ ⊕Hn−k

c (V )∗ Hn−k
c (U ∩ V )∗

understand exactly what is going on here.) Now use the five lemma to complete the proof
by induction. The inductive assumption is supposed to give that most of the vertical arrows
are isomorphisms, as needed for an application of the five lemma.

3. The Poincaré dual of a submanifold

Let M be a compact oriented smooth n-manifold. Since Hk(M,R) and Hn−k(M,R) are
both dual to Hk(M,R) we have an isomorphism

Hk(M) ' Hn−k(M) (3.1)

This means that there is a correspondence between closed k-cycles on M and closed (n−k)-
forms on M , Y 7→ ηY , with the property∫

Y
α =

∫
M
α ∧ ηY (3.2)

for all α ∈ Hk(M). The form ηY is often referred to as the ‘Poincaré dual’ of Y .
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The ‘explicit’ construction of the Poincaré dual ηY of Y is interesting but we only have
space for an example or two. Note that its degree is the codimension of Y . It turns out
that one can find representatives of ηY which are supported in arbitrarily small tubular
neighbourhoods of Y , and which look, transversely, like a bump (n−k)-form in the normal
variables.

Remark 3.1. Currents.

Intersection form is PD to cup product
Suppose that Y and Z are (closed) oriented submanifolds of complementary dimensions

k and n− k which intersect transversally. By the above we have dual classes ηY and ηZ of
degrees respectively (n− k) and k. Let p be an intersection point and choose coordinates
x = (x′, x′′) centred at p and defined in a small open subset U such that

Y ∩ U = {x′′ = 0} = {xk+1 = · · · = xn = 0} and Z ∩ U = {x′ = 0} = {x1 = · · · = xk = 0}.
(3.3)

It turns out that it’s not far off the truth to say that in U ,

ηY = ρ(x′′)dx′′, ηZ = ρ(x′)dx′

where ρ stands for a bump function in the given number of variables, of total mass 1. We
may suppose that the support of each is arbitrarily close to 0 and then it is clear that∫

U
ηY ∧ ηZ = ±1

Thus
∫
M ηY ∧ ηZ is a sum with signs over the points of Y ∩ Z. This is a sketch of the

principle that the intersection of transverse submanifolds in H∗(M) goes over to wedge
product under the isomorphism (3.6).

3.1. Self-intersection of the diagonal and the Euler characteristic. Let M be a
smooth compact oriented manifold of dimension n.

Theorem 3.2. Hopf index Theorem. Let V be a generic vector field on M with isolated
simple zeros. Then the number of zeros, counted with sign, is equal to the Euler character-
istic,

χ(M) =
∑

(−1)k dimHk(M,R). (3.4)

Proof. We do not prove this in full, in particular it would be too much of a diversion to
give the full definition of how to count zeros of vector fields.

Let ∆ be the diagonal of M ×M . We shall prove

∆ ·∆ = χ(M). (3.5)

This is well on the way to proving the theorem. To sketch why, note that a tubular
neighbourhood U of ∆ in M×M can be identified diffeomorphically with TM , the tangent
bundle of M , and so ∆ ·∆ is the same as the self-intersection of the zero-section of TM .
We may perturb the zero section simply by replacing it by a section of TM , which is the
same as a vector field. The intersections are the zeros of the vector field. There is a way of
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counting zeros of vector fields which gives the self-intersection of the zero-section in TM .
So if you believe all that, it remains to prove (3.5).

Since Hk(M) and Hn−k(M) are dual to Hk(M) we have an isomorphism

Hk(M) ' Hn−k(M) (3.6)

If the class in Hk is represented by a submanifold Y , then this is the class of ηY .
Let η be the Poincare dual of the diagonal ∆ in M ×M so that for every class θ ∈

Hn(M ×M), ∫
∆
θ =

∫
θ ∧ η. (3.7)

By the Künneth formula for cohomology, H∗(M × M) = H∗(M) ⊗ H∗(M). Thus we
can choose a basis in the following way: let (ej) and (fj) be dual bases for wedge product
(possible by PD), that is

∫
ej∧fk = δjk. Now let αj be the pull-back by the first projection

of ej and let βk be the pull-back by the second projection of fk. Then αj ∧ βk is a basis of
H∗(M ×M). Thus

η =
∑

crsπ
∗
1er ∧ π∗2fs (3.8)

for some real coefficients crs.

Claim:
η =

∑
(−1)deg erπ∗1er ∧ π∗2fr

The claim is proved as follows. Fix eq of degree k and fp of degree m. Then∫
∆
π∗1fp ∧ π∗2eq =

∫
M
fp ∧ eq = (−1)mkδpq = (−1)k(n−k)δpq. (3.9)

By the defining property of η, we also have∫
∆
π∗1fp ∧ π∗2eq =

∫
M×M

π∗1fp ∧ π∗2eq ∧ η (3.10)

=
∑
r,s

crs

∫
M×M

π∗1fp ∧ π∗2eq ∧ π∗1er ∧ π∗2fs (3.11)

=
∑
r,s

crs(−1)(m+k)(n−m)

∫
π∗1(er ∧ fp) ∧ π∗2(eq ∧ fs) (3.12)

=
∑
r,s

crs(−1)(m+k)(n−m)δrpδqs (3.13)

Equating, and using that m+ k = n when p = q,

cpq = (−1)k where deg ep = k. (3.14)
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To complete the proof, we compute

∆ ·∆ =

∫
∆
η =

∑
cpq

∫
ep ∧ fq =

∑
p

(−1)deg ep . (3.15)

Because the ep form a basis of H∗(M), this sum just counts up the elements in the basis,
with a plus sign if the basis element is in the even cohomology and a minus sign if in the
odd cohomology. The proof is complete. �
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