
The Weil Conjectures II
and why you should care...

1 Introduction

We start by introducing two questions about which you may care, even if you are not
directly interested in the Weil Conjectures because you think you do not care about
results over finite fields:

• Let f(x) ∈ Z[x] be such that for all natural numbers n, the value f(n) is a square
number. Is the polynomial f(x) itself a square?

• Consider the set of isomorphism classes [X] of projective varieties X defined over
C (and ignore that this may be set-theoretically dodgy). Take the abelian group
freely generated by these classes and factor out by the relations

[X − Y ] = [X]− [Y ]

for closed immersions Y ↪→ X. This is the so-called Grothendieck group of
varieties K0(Var/C). In it, we have equalities like:

P2 = A2 + A1 + A0

Addition is realised by disjoint unions

[X] + [Y ] = [X t Y ]

One can also equip K0 with a ring structure by setting

[X][Y ] = [X × Y ]

and arrive at the Grothendieck ring of varieties. Does [X] = [Y ] in K0 imply
dimX = dimY ? Does it even imply that X and Y have the same number of
maximal-dimensional irreducible components?

Exercise: Compute the Grothendieck group of nicely compactifiable differentiable
manifolds (i.e. submanifolds of compact differentiable manifolds with compact differ-
entiable complement). Hint: Euler characteristic with compact support, the answer is
Z. For uniqueness, write the real line as union of a point and two copies of itself. Then
triangularise manifolds (e.g. using Morse theory.) For additivity, use an appropiate
long exact sequence.
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The result motivates why we may think of the Grothendieck group in the algebraic
setting as the attempt to construct a universal Euler characteristic. It also remarkably
shows that if the claim about dimensions in the Grothendieck ring of varieties is true,
it cannot be solved by purely topological arguments.

Both questions provide examples1 of situations that can be analysed with finite
field methods and then transferred, as we will see later. In the next section, we first
describe how results for finite fields can be transferred in elementary cases where the
Weil Conjectures are not needed.

2 Transfer

A famous transfer result is2:

Theorem 1 (Ax-Grothendieck). Let P = (P1, . . . , Pn) : Cn → Cn be a polynomial
map. If P is injective, then it is also surjective.

The situation is very easy to analyse for finite fields. Then it just reduces to the
set-theoretic statement that injective self-maps are surjective. The result then also
holds for the direct limit (union) of all finite fields of given characteristic p, i.e. the
algebraic closure Fp. In case you are confused later on: This limit procedure breaks

for the converse direction as the restriction of a surjective polynomial map Fp
n → Fp

n

to Fnpm → Fnpm is not necessarily surjective.
Having established the result for finite fields and their algebraic closures, there are

two ways to transfer this result to prove Ax-Grothendieck:

2.1 Mathematical Logic approach: Compactness Theorem and The
Lefschetz Principle

The Lefschetz Principle for first-order logic states:

Theorem 2. Let φ be a first-order sentence in the language 0, 1,+,−, ·. Then the
following are equivalent:

(i). φ is true for some algebraically closed field of characteristic 0.

(ii). φ is true for all algebraically closed fields of characteristic 0.

(iii). φ is true for algebraically closed fields of arbitrarily large characteristic p.

(iv). φ is true for algebraically closed fields of sufficiently large characteristic p (greater
than some P depending on φ).

First-order means that φ is assembled from the above language symbols, as well
as logical operators and quantifiers over elements from the field (not relations – that
would be second-order). Then the Lefschetz principle is a combination of

1For more examples, read Serre’s educational paper How to use finite fields for problems concerning
infinite fields at http://arxiv.org/abs/0903.0517

2A. Borel also gives a topological proof.
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• the compactness theorem: If every finite subset of sentences has a model structure
that satisfies it, then the set itself has a model structure that satisfies it. This
is a corollary of Gödel’s completeness theorem which characterises implications
syntactically, so if you can derive a contradiction from a sentence set, then you
can already derive it from a finite subset.

• the completeness of the theories of algebraically closed fields: Any first-order
sentence either holds in all algebraically closed fields of a fixed characteristic or
in none. This can be checked with the so-called  Loś-Vaught test (which in the
end also boils down to a corollary of the compactness theorem).

Now for Ax-Grothendieck, apply the Lefschetz theorem for each (multi-)degree of P .

2.2 Commutative Algebra approach: Spreading out and
Grothendieck transfer

We use the Hilbert Nullstellensatz: Injectivity can be expressed by saying that there
exists polynomial map (f1, . . . , fn) : Cn × Cn → Cn and a natural exponent r such
that

(Pi(x)− Pi(y))fi(x, y) = (x− y)r

Lack of surjectivity is given by the existence of g : Cn → Cn and a point x0 such that
(using the scalar product)

(P (x)− x0)g(x) = 1

Now take the collection C of all coefficients in P , the witnesses f and g and x0. They
generate a ring Z[C] finitely presented over Z. This passage is known as spreading out.

Exercise Complete the proof by factoring modulo a maximal ideal. [The lecture notes
were much sketchier here, so I have already given enough hints.]

At the end of this section, let’s have another exercise for transfer:

Exercise Let G be a finitely presented group. Define its profinite completion Ĝ as
the inverse limit over all finite quotients. Then in the following, the first statement
implies the second:

(i). Ĝ is trivial, i.e. G has no non-trivial, finite quotients.

(ii). The representation category of G is trivial, i.e. every finite dimensional complex
representation is trivial.

Hint: Note that any action of G on a finite vector space factors through Ĝ. Then
apply spreading out using the finite presentation of G.

Grothendieck’s motivation for considering this problem was to understand the re-
lation between the étale and the de Rham fundamental group, the former being the
profinite completion and the latter the algebraic envelope3 of the topological funda-
mental group. Of course, he proved this in much greater generality4.

3mumble mumble. . . Tannakian
4http://www.ams.org/mathscinet-getitem?mr=262386
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3 Counting Points

3.1 Grothendieck group

A useful way to study the Grothendieck ring of varieties is via its realisation maps into
a group A, also known as motivic measures or additive invariants. These are maps
from isomorphism classes of varieties that behave additive under disjoint unions, i.e.
descend to K0 → A. One such measure is counting points:

# : K0(Var/Fq)→ Z, [X]→ #X(Fqm)

For example:
#An(Fq) = qm

#An(Fqm) = qmn

#Pn(Fqm) =
q(n+1)m

qm − 1
= 1 + qm + · · ·+ qmn

# SpecFqm(Fqr ) = Hom(SpecFqr ,SpecFqm) = Hom(Fqm ,Fqr ) =

{
m m|r
0 else

From the Weil Conjectures, it will follow that if a projective variety X of dimension
n is the union of N smooth, geometrically irreducible (i.e. after base change to an
algebraic closure) components of maximal dimension, then

#X(Fqm) = Nqmn + smaller terms

Exercise Complete this argument to show the claim about K0.

3.2 Square polynomials

We can also tackle the first problem now and prove that f(x) assuming square values
for all integers is itself the square of a polynomial in C[x] (although showing Z[x] is
also possible). For this, observe that f(x) is a square if and only if the hyperelliptic
curve C given by

y2 = f(x)

has two irreducible components. This however can be established over finite fields and
then be transferred. Reducing the curve C modulo q (not a power of 2), the number
of Fqm -rational points is governed by 2 · qm: For each x ∈ Fqm (except for the roots of
f whose number is bounded by deg f), we get two solutions for y.

Alternatively (or equivalently), one can use the Weil estimate for smooth, projective,
geom. irreducible curves of genus g:

|X(Fq)− (q + 1)| ≤ 2g
√
q
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Exercise Formulate and prove the most general version of this type of claim you can
imagine. Possible answer: Let f(x) be a multivariate polynomial that assumes perfect
power values at all integral points (possibly with different exponents). Then f is a
perfect power. . .

4 Zeta functions

Let X be a smooth, projective variety over Fq. We can try to combine all counting
measures into one generating function. More precisely, we define an Euler product

ZX(t) =
∏
x∈|X|

(1− tdeg(x))−1

where |X| is the set of closed points in X and deg(x) = [k(x) : Fq] is the degree of
the residue field k(x) at x. This converges because there are only finitely many points
with a given degree.

Compare this to the Riemann zeta function:

ζZ(s) =
∏
p

(1− p−s)−1 =
∏

x∈| SpecZ|

(1−#k(x)−s)−1

or more generally the zeta function of a scheme X of finite type over the integers or a
finite field:

ζX =
∏
x∈|X|

(1−#k(x)−s)−1

(This also specialises to the Dedekind zeta function of a number field.)
Then ZX(q−s) = ζX(s). So in the case of a finite ground field, we got around the

nasty exponent because unlike over Z we have a uniform base q.

Exercise

ZX(t) = exp

( ∞∑
m=1

#X(Fqm)

m
tm

)
Hint: Use the identity log(1/(1− s)) =

∑
m≥1

tm

m .
Also, note that the logarithmic derivative of ZX(t) is in fact the generating function

for #X(Fqm).

Exercise Let’s compute ZP1(t) with the Euler product:

ZP1(t) = Z∞(t)ZA1(t) =
1

1− t
∏

06=f irred. monic

1

1− tdeg(f)

=
1

1− t
∑

06=f monic

tdeg(f) =
1

1− t

∞∑
n=0

qntn =
1

(1− t)(1− qt)
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Further examples The zeta functions of elliptic curves can be computed via the
action of Frobenius on the Tate module. (This is very enlightening and foreshadows
the use of l-adic cohomology in the general case: The Tate module is nothing else but
H1.)

Weil himself was able to prove the conjectures for curves and abelian varieties (Know-
ing the l-adic cohomology, it is not surprising that these cases were easier: The coho-
mology of abelian varieties are the exterior powers of its Tate module and for curves,
we have the Jacobian.)5

5 The Weil Conjectures

We can finally state the conjectures for the zeta function ZX(t) formulated by André
Weil in 1949 and proven completely by Deligne in 1974. Let dimX = n.

Rationality ZX(t) is a rational function with integer coefficients of the form

P1(t)P3(t) . . . P2n−1(t)

P0(t)P2(t) . . . P2n(t)

with all the Pi being polynomials and P0(t) = 1− t, P2n(t) = 1− qnt.

Functional equation
ZX(1/(qnt)) = ±qnE/2tEZ(t)

with E is the self-intersection number of the diagonal of X ×X.

Betti numbers Setting Bi := degPi(t) the i-th Betti number yields E =
∑

(−1)iBi.
If X is the reduction of a variety Y over a number ring R modulo a prime ideal,
then Bi = hi((Y ×R C)h,Z) where h is the associated analytic space.

Riemann hypothesis Pi(t) is a (unique) polynomial with integer coefficients looking
like

∏
(1 − αij) where aij are algebraic integers satisfying |aij | = qi/2 for any

embedding Q ↪→ C. (Then the zeros of ζX(s) satisfy the usual Riemann hypoth-
esis.)

Caveats

• The rationality does not imply that the Pi have integer coefficients, only that
after reducing, the whole fraction has integer coefficients.

5For abelian varieties, see Mumford’s book or Milne’s notes Abelian varieties, which also contains
a proof for curves using the Jacobian. For an intersection-theoretic proof of WC for curves, see
last year’s notes or Stichtenoth’s Algebraic Function Fields and Codes for a very elementary
(but not enlightening) proof due to Stepanov-Bombieri. The case that convinced Weil to publish
his conjectures was the one of certain hypersurfaces that he tackled with character theory and
can be found in Ireland-Rosen’s Classical Introduction to Modern Number Theory. I also en-
joyed reading the Secret Blogging Seminar posts (https://sbseminar.wordpress.com/2010/06/
10/motive-ating-the-weil-conjecture-proof) with some remarks on Grothendieck’s Standard
Conjectures.
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• In the setting of X having a model over a number ring like Z, we do not require
this model to be smooth. In fact, Fontaine showed that the only smooth projec-
tive curve over SpecZ is P1. Relating the Bi to the topological Betti numbers
exhibits E as the topological Euler characteristic.

• Algebraic numbers α for which all embeddings have the same absolute value
|q|i/2 are quite special. They are called q-Weil numbers of weight i.

Example In our computed example of P1, the Betti numbers are 1, 0, 1 which coin-
cides with the degrees of 1− t, 1, 1− qt.

5.1 Estimates

Knowing the zeta function (and its logarithm), we can recover a formula for the point
counts:

#X(Fqm) =

2n∑
i=0

(−1)i
Bi∑
j=1

αmij = 1 + qmn +

2n−1∑
i=1

(−1)i
Bi∑
j=1

αmij = 1 + qmn +O(qm(n−1/2))

In the case of a smooth projective curve of genus g, we find:

|#X(Fq)− (q + 1)| ≤ 2g
√
q

which is a direct generalisation of the Hasse-Weil for elliptic curves.

5.2 Personal side remark

Kapranov defines a motivic zeta function as

Z ′X(t) =
∑
m≥0

[X(n)]tm

where X(n) is the n-th symmetric power of X. In the topological setting, by a theorem
of Macdonald (with an easy one-line-proof):

Z ′X(t) = 1/(1− t)χ(X)

On the other hand, in the algebraic setting after applying the counting measure, we
recover the local zeta function appearing in the Weil conjectures. (How does one prove
this?) So in two rather different situations, we have arrived at a rational function!

Where does this phenomenon come from? Is Kapranov’s zeta function always ratio-
nal? The answer to the second question is No, Larsen-Lunts gave a counter-example
over C with a specially constructed motivic measure. This measure vanishes on [A1],
in consequence rationality is still an open question if we localise by [A1].6

6I found these things in notes by Vakil (http://swc.math.arizona.edu/aws/2015/2015VakilNotes.
pdf) which contain more intriguing facts and questions about the Grothendieck ring of varieties.
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Weil cohomology theories

The way to prove the Weil conjectures is to give them a cohomological interpretation.
Much of the algebraic geometry initiated Grothendieck was devoted to finding the
right cohomology theory, from which the conjectures could be deduced. This so-called
Weil cohomology theory should be modelled after singular cohomology for smooth,
projective complex varieties.

Let k be any field and K a field of characteristic 0. We have the following wish list:

• A Weil cohomology theory over k with coefficients in K should be a contravariant
functor

{smooth, projective varieties/k} → {graded K-algebras}
X 7→ H∗(X,K) =

⊕
Hi(X,K)

where the graded components are finite dimensional K-vector spaces and zero
outside 0 ≤ i ≤ 2 dimX.

• Poincaré duality: Multiplication induces perfect pairings:

Hi(X,K)×H2d−i(X,K)→ H2d(X,K) ∼= K

• Künneth formula:

H∗(X × Y,K) = H∗(X,K)⊗H∗(Y,K)

• Cycle map: There exists a (cl) : Zi(X) → H2i(X,K) for where Zi denotes the
group of algebraic cycles of codimension i.

• Lefschetz trace formula: For any endomorphism f : X → X over k = k with
graph Γf , we can compute the number of fixed-points:

(Γf ·∆X) =

2d∑
i=0

(−1)i Trace(f∗|Hi(X,K))

• Hard Lefschetz Theorem: If H ⊂ X is a hyperplane section, then multiplication
by cl(H)i induces an isomorphism Hi(X,K)→ H2d−i(X,K).

• Comparison theorem: For X/C and K ⊂ C, H∗(X,K)⊗K C ∼= H∗sing(X,C).

There are different known Weil cohomology theories apart from the traditional sin-
gular and de Rham, which do not work over finite fields. These are l-adic cohomology
building upon étale cohomology with K = Ql (l 6= chark prime) and crystalline co-
homology with K = W (k) (the Witt vectors of k). Rigid cohomology is a p-adic
cohomology theory that extends crystalline cohomology.
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The Lefschetz formula allows us to count points cohomologically, using the fact that
the fixed-points under the Frobenius map F (raising coordinates to the q-th power)
are the Fq-points of X:

#X(Fqm) = (ΓFm ·∆X) =

2d∑
i=0

(−1)i Trace((fm)∗|Hi(X,K))

Using the lemma that

− log(charpoly(φ)) =
∑
m≥1

Trace(φm)
tm

m

for general vector space endomorphisms φ, we can deduce the required rationality with

Pi = charpoly(F |Hi(X,K))

(Integrality follows once we see that ZX is a power series with coefficients in Z and by
the above a rational function in K.)

The functional equation can be derived from Poincaré duality while the Riemann
hypothesis is a deeper fact and amounts to the fact of proving that the eigenvalues of
the Frobenius map acting on cohomology are Weil numbers.7

7For a reference, try Deligne’s original Weil papers or Freitag-Kiehl’s book/Milne’s notes on Étale
Cohomology.
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